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VIZING’S CONJECTURE: A SURVEY AND RECENT RESULTS

BOŠTJAN BREŠAR, PAUL DORBEC, WAYNE GODDARD, BERT L. HARTNELL,
MICHAEL A. HENNING, SANDI KLAVŽAR, AND DOUGLAS F. RALL

Abstract. Vizing’s conjecture from 1968 asserts that the domination number of the
Cartesian product of two graphs is at least as large as the product of their domination
numbers. In this paper we survey the approaches to this central conjecture from domina-
tion theory and give some new results along the way. For instance, several new properties
of a minimal counterexample to the conjecture are obtained and a lower bound for the
domination number is proved for products of claw-free graphs with arbitrary graphs.
Open problems, questions and related conjectures are discussed throughout the paper.
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1. Introduction

Vertex connectivity, matching number, chromatic number, crossing number, genus, and
independence number are but a few examples of graph invariants. An important problem
to be solved in understanding a graph invariant is “how it behaves” on graph products.
Because of how the product relates to the two factors, it seems reasonable to think that
the value of the invariant on the product of two graphs G and H will, in some consistent
way, relate to its value—and perhaps that of other invariants—on G and H. In 1996
Nowakowski and Rall [36] explored this relationship for twelve independence, coloring and
domination invariants on the ten associative graph products whose edge structure depends
on that of both factors.

For some invariants and products, this relationship is known and easy to verify. An
example of this situation is that the chromatic number of the Cartesian product of two
graphs is the maximum of their chromatic numbers. In some cases, for example the
independence number of the direct product, there are proven bounds, but in general no
exact formula is known in terms of the independence numbers of the two factor graphs.
For still others the invariant has a conjectured behavior, but the issue is far from being
settled. This is the situation for the domination number on a Cartesian product. The
following conjecture was made by V. G. Vizing in 1968.

Conjecture 1.1. ([39]) For every pair of finite graphs G and H,

(1) γ(G 2H) ≥ γ(G) γ(H).

As usual, γ stands for the domination number, and G 2 H is the standard notation for
the Cartesian product of graphs G and H.
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Vizing’s conjecture is arguably the main open problem in the area of domination theory.
In this paper we present a survey of what is known about attacks on Vizing’s conjecture and
give some new results. We say that a graph G satisfies Vizing’s conjecture if inequality (1)
holds for every graph H.

The most successful attack in proving that the conjecture holds in special cases has
been the idea of partitioning a graph into subgraphs of a particular type, as initiated by
Barcalkin and German [4]. Their approach gives a large class of graphs, we call them
BG-graphs, which satisfy Vizing’s conjecture. Their fundamental contribution, its conse-
quences, and independent rediscoveries are presented in Section 2.

The class of BG-graphs has been expanded in two different ways. The first class is the
one of Type X graphs as introduced in [24]; the second was recently proposed in [10].
These two classes are presented in Sections 3 and 4, respectively. The second approach
implies, among others, that Vizing’s conjecture holds for chordal graphs, a result first
proved in [2].

In 2000, Clark and Suen [14] made a breakthrough by proving, using what we call the
double projection approach, that γ(G2H) ≥ 1

2γ(G) γ(H) for all graphs G and H. Aharoni
and Szabó [2] applied the approach to settle the conjecture for chordal graphs. In this
paper we use the double projection approach to prove that for a claw-free graph G and
any graph H without isolated vertices, γ(G2H) ≥ 1

2α(G)(γ(H) + 1), where α stands for
the independence number. The double projection approach is treated in Section 5.

We follow with a section on possible minimal counterexamples to the conjecture. Among
other properties we prove that a minimal counterexample G is edge-critical, that every
vertex of G belongs to a minimum dominating set, and that the domination number
decreases in any graph formed by identifying arbitrary vertices u and v of G.

Then, in Section 7, several additional approaches to the conjecture are briefly described,
while Section 8 gives Vizing-type theorems for related domination invariants. For instance,
a version of Vizing’s conjecture is true for the fractional domination number. We conclude
the paper with several stronger and weaker conjectures than Vizing’s conjecture.

In the rest of this section definitions are given. Let G = (V (G), E(G)) be a finite,
simple graph. For subsets of vertices, A and B, we say that B dominates A if A ⊆ N [B];
that is, if each vertex of A is in B or is adjacent to some vertex of B. When A and B
are disjoint and B dominates A, then we will say that B externally dominates A. The
domination number of G is the smallest cardinality, denoted γ(G), of a set that dominates
V (G). If D dominates V (G), we will also say that D dominates the graph G and that D
is a dominating set of G.

Any dominating set of G must intersect every closed neighborhood in G. Thus, the
domination number of G is at least as large as the cardinality of any set X ⊆ V (G) having
the property that for distinct x1 and x2 in X, N [x1]∩N [x2] = ∅. Such a set X is called a
2-packing, and the maximum cardinality of a 2-packing in G is denoted ρ(G) and is called
the 2-packing number of G. The smallest cardinality of a dominating set that is also
independent is denoted i(G), and the vertex independence number of G is the maximum
cardinality, α(G), of an independent set of vertices in G. For convenience of notation we
will write |G| to denote the number of vertices in G, and g ∈ G to mean that g is a vertex
of G.
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If G is not a complete graph, then for any pair of vertices g1 and g2 that are not
adjacent in G, it is clear that γ(G)− 1 ≤ γ(G+ g1g2) ≤ γ(G). If G has the property that
γ(G)− 1 = γ(G+ g1g2) for every such pair of nonadjacent vertices, then G is edge-critical
with respect to domination (or edge-critical for brevity). We will see in Observation 2.1
that to prove Vizing’s conjecture, it suffices to show the inequality is true whenever one
of the two graphs is edge-critical.

The Cartesian product G 2 H of graphs G and H is the graph whose vertex set is
V (G) × V (H). Two vertices (g1, h1) and (g2, h2) are adjacent in G 2H if either g1 = g2
and h1h2 is an edge in H or h1 = h2 and g1g2 is an edge in G. For a vertex g of G, the
subgraph of G2H induced by the set { (g, h) | h ∈ H } is called an H-fiber and is denoted
by gH. Similarly, for h ∈ H, the G-fiber, Gh, is the subgraph induced by { (g, h) | g ∈ G }.
We will have occasion to use the fiber notation Gh and gH to refer instead to the set of
vertices in these subgraphs; the meaning will be clear from the context. It is clear that all
G-fibers are isomorphic to G and all H-fibers are isomorphic to H.

We will have need of projection maps from the Cartesian product G 2H to one of the
factors G or H or to a fiber. The projection to H is the map pH : V (G 2 H) → V (H)
defined by pH(g, h) = h. For a specified vertex x of G, the projection to the H-fiber, xH,
is the function that maps a vertex (g, h) to (x, h). Projections to G or to a G-fiber have
the obvious meaning.

2. Decomposable Graphs

One of the first results that shows the truth of Vizing’s conjecture for a class of graphs is
due to Barcalkin and German [4]. Their theorem about the so-called decomposable graphs
is still one of the nicest partial results on the conjecture.

Let G be a graph with domination number k. If the vertex set of G can be covered by k
complete subgraphs (cliques, for short), then G is called a decomposable graph. Barcalkin
and German proved that every decomposable graph satisfies Vizing’s conjecture. They
also noticed that the class of graphs that satisfy Vizing’s conjecture can always be extended
by using the following basic fact.

Observation 2.1. Let G be a graph that satisfies Vizing’s conjecture, and let G′ be a
spanning subgraph of G such that γ(G′) = γ(G). Then G′ also satisfies Vizing’s conjecture.

Indeed, if H is any graph, then

γ(G′)γ(H) = γ(G)γ(H) ≤ γ(G 2H) ≤ γ(G′
2H) .

The last inequality holds since G′
2H is a spanning subgraph of G 2H.

Hence the theorem of Barcalkin and German states:

Theorem 2.2. ([4]) If a graph G is a spanning subgraph of a decomposable graph G′ such
that γ(G) = γ(G′), then for every graph H, γ(G 2H) ≥ γ(G)γ(H).

Theorem 2.2 is not difficult to prove if one observes a nice feature of the partition of
decomposable graphs related to the external domination of cliques.

Let G be a decomposable graph with γ(G) = k, and let C = {C1, . . . , Ck} be a partition
of V (G) into cliques. Suppose that one wants to externally dominate a union of ℓ < k
cliques from C; that is, given Ci1 , . . . , Ciℓ ∈ C one looks for a (smallest) set of vertices in
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G − (Ci1 ∪ · · · ∪ Ciℓ) that dominates Ci1 ∪ · · · ∪ Ciℓ . Select and fix such a set D, and let
Cj1 , . . . , Cjt be the cliques from C that have a nonempty intersection with D. Then we
claim that

(2)

t
∑

m=1

(|Cjm ∩D| − 1) ≥ ℓ.

In words, the sum of the number of “additional” vertices (that is, the surplus to 1 of
the number of vertices from D) in cliques Cjm is at least the number of cliques that are
externally dominated. Indeed, if the left-hand side of inequality (2) were less than ℓ,
then the ℓ + t cliques from C would be dominated by fewer than ℓ + t vertices. Since
the remaining cliques can be dominated by k − (ℓ + t) vertices (each clique by one of its
vertices), this implies the contradiction γ(G) < k.

Proof of Theorem 2.2. By Observation 2.1 we may assume that G is a decomposable
graph. Consider the Cartesian product G 2 H, where G is a decomposable graph with
γ(G) = k. Let D be a minimum dominating set of G 2H. The main idea of the proof is
that each vertex from D will get a label from 1 to k, and for each label i, the projection to
H of the vertices from D that are labeled i, is a dominating set of H. This clearly implies
|D| ≥ k γ(H), and the conjecture holds for G.

Let C1, . . . , Ck be a partition of V (G) into cliques. For each h ∈ V (H) and i, 1 ≤ i ≤ k,
we call Ch

i = V (Ci) × {h} a G-cell. (See Figure 1 where the corresponding partition of
G 2H is shown, and the cell Ch

i is shaded.)
The following simple labeling rule (SLR) is used: if a G-cell Ch

i contains a vertex from
D, then one of the vertices from D ∩ Ch

i gets the label i. Hence in the projection, h will
also get the label i. Note that we have not yet determined the remaining labels if there is
more than one vertex in D ∩ Ch

i .

Figure 1. The partition of G 2H into G-cells

Fix an arbitrary vertex h ∈ V (H). We need to prove that for an arbitrary i, 1 ≤ i ≤ k,
there exists a vertex from D, labeled by i, that is projected to the neighborhood of h.
There are two cases. First, if there exists a vertex of D in V (Ci) × N [h], then by SLR,
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there will be a vertex in the neighborhood of h to which the label i is projected, and so
this case is settled.

The second case is that there is no vertex from D in V (Ci) × N [h], and we call such
Ch

i a missing G-cell for h. Let Ch
i1
, · · · , Ch

iℓ
be the missing G-cells for h. Note that, by

definition, the missing G-cells for h are dominated entirely within the G-fiber, Gh. Hence
there are vertices in D ∩Gh that dominate Ch

i1
∪ · · · ∪Ch

iℓ
. Let Ch

j1
, . . . , Ch

jt
be the G-cells

in Gh that intersect D. Since Gh is isomorphic to G, we infer by inequality (2) that

t
∑

m=1

(|Ch
jm

∩D| − 1) ≥ ℓ.

Thus there are enough additional vertices in D ∩Gh (that have not already been labeled
by SLR), so that for each missing G-cell Ch

i , the label i can be given to one of the vertices
in Ch

jm
∩D, where |Ch

jm
∩D| ≥ 2. Hence in this case the label i will be projected to h.

This concludes the proof of Theorem 2.2. �

A graph G satisfying the hypothesis of Theorem 2.2 was said by Barcalkin and German
to belong to the A-class; we call such a graph a BG-graph. Several common graphs are
BG-graphs, including trees, any graph with domination number 2, cycles, and any graph
having a 2-packing of cardinality equal to its domination number.

The truth of the conjecture for a graph having a 2-packing of cardinality equal to its
domination number was independently obtained in [32] while in [17] it was done for cycles.
Also, Vizing’s conjecture was proved for graphs with a certain vertex-partition property
by Faudree, Schelp and Shreve [18] and by Chen, Piotrowski and Shreve [11]. It was shown
in [22] that the first class is a proper subclass of the BG-graphs while the second is the
same as the class of BG-graphs.

On the other hand, any bipartite graph B with γ(B) < |B|/2, that is edge-critical,
is not a BG-graph. An example of such a bipartite graph is B2 of Figure 2, formed by
removing the edges of 3 vertex-disjoint 4-cycles from K6,6. The nonbipartite graph B1 is
not edge-critical, but a short analysis shows it also is not a BG-graph.

Figure 2. Two graphs that are not BG-graphs
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3. The One-Half Argument and Type X Graphs

In 1995, Hartnell and Rall [24] found a method of partitioning V (G) that is somewhat
different from that of Barcalkin and German. They termed the class of graphs having
such a partition, Type X . Any decomposable graph is of Type X . The proof of the main
theorem regarding these graphs uses the simple fact that a connected graph of order at
least 2 has a domination number that is at most one-half its order. The proof technique
is best illustrated by using a specific example, the graph G in Figure 3.

C

S

C
1

2

Figure 3. Graph G for one-half argument example

Note first that γ(G) = 3. We shall consider V (G) as being partitioned into three parts,
two of which induce cliques and the other induces a star. Let C1 = {r, s}, C2 = {a, b, c}
and S = {u, v,w}. Note that both the star S and the clique C2 contain a vertex whose
neighborhood is entirely contained in its own part, whereas both vertices of C1 have a
neighbor outside of C1.

Let H be any graph and consider any dominating set D of G 2H. We will show that
|D| ≥ 3γ(H); more precisely, we will find three disjoint sets in D each with cardinality at
least γ(H). We start by designating a vertex x from each of the three parts of V (G), and
constructing a so-called missing fiber list Lx.

Suppose D ∩ vH does not dominate vH. Let Lv be the set of all the vertices h in H
such that (v, h) is not dominated by D ∩ vH. We call Lv the missing fiber list for the
H-fiber vH. In a similar manner make a missing fiber list Lb for the H-fiber bH.

Fix a vertex, say r, of the clique C1, and project all the elements of D ∩ sH onto rH.
Let X represent the set of vertices in rH which were already in D, together with those
that are images of this projection. The set of all vertices h in H such that (r, h) is not
dominated by X is the missing fiber list, Lr, for C1. Of course, some of these missing fiber
lists may be empty. The key idea is to find replacements for the vertices on these lists in
the uH-, wH-, aH-, and cH-fibers.

By the nature of S noted above, if h ∈ Lv then at least one of (u, h), (w, h) is in D.
Similarly, if h ∈ Lb, then at least one of (a, h), (c, h) is in D. However, these vertices also
dominate (s, h) or (r, h) (within the Gh-fiber). In showing that D contains at least 3γ(H)
vertices we must be careful not to count any members of D twice.
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Now project the vertices in D∩ uH onto wH. Let F denote the subgraph of wH induced
by the resulting set of vertices from D ∩ wH together with the images of this projection.

Consider any k ∈ Lr.
Assume first that (w, k) /∈ F . This implies that k /∈ Lv and that both of (a, k) and

(c, k) are in D to dominate (s, k) and (r, k). Thus, one of these can be counted for the
missing fiber list in C1 and the other for the missing fiber list Lb, if necessary.

Now assume that (w, k) is an isolated vertex in F and that both of (u, k) and (w, k)
belong to D. If k ∈ Lb, then the nature of C2 noted above implies there are at least three
members of D in the Gk-fiber. In particular, at least one of (a, k) or (c, k) is in D. Hence,
(u, k) can be counted for the missing fiber list Lr and (w, k) for the missing fiber list Lv

if necessary (i.e., if k ∈ Lv).
Next we assume that (w, k) is an isolated vertex in F and that only one of (u, k) or (w, k)

is in D. Suppose that (u, k) ∈ D. Since D dominates (r, k) it follows that (c, k) ∈ D. In
addition, since (w, k) must be dominated by D from within the Gk-fiber, we may conclude
that either (v, k) ∈ D or (a, k) ∈ D. In this case we have at least three vertices from D
in Gk. Hence we will be able to count one of these for missing fiber k in C1 and still have
two members of D in case k is in Lv or in Lb. The case when (w, k) ∈ D is handled in a
similar manner.

Finally, we assume that (w, k) is a vertex in a component K of order two or more in F .
Since the complement of a minimal dominating set is also a dominating set, K has two
disjoint dominating sets A1 and A2. The vertices in A1 can be counted towards dominating
vH and those in A2 can be counted towards dominating rH.

This counting gives |D| ≥ 3γ(H) = γ(G)γ(H). Thus Vizing’s conjecture is true for G.

In the proof of [24, Theorem 3.1] that the graphs of Type X satisfy Vizing’s conjecture,
a similar method of partitioning and the one-half argument were used as for G in the
above example. Here is the formal definition of Type X graphs.

Consider a graph G with γ(G) = n = k + t + m + 1 and such that V (G) can be
partitioned into S ∪ SC ∪ BC ∪ C, where S = S1 ∪ · · · ∪ Sk, BC = B1 ∪ · · · ∪ Bt, and
C = C1 ∪ · · · ∪ Cm. Each of SC,B1, . . . , Bt, C1, . . . , Cm induces a clique. Every vertex
of SC (special clique) has at least one neighbor outside SC, whereas each of B1, . . . , Bt

(the buffer cliques), say Bi, has at least one vertex, say bi, which has no neighbors outside
Bi. Each Si ∈ {S1, . . . , Sk} is “star-like” in that it contains a star centered at a vertex vi

which is adjacent to each vertex in Ti = Si −{vi}. The vertex vi has no neighbors besides
those in Ti. Although other pairs of vertices in Ti may be adjacent (and hence Si does not
necessarily induce a star), Si does not induce a clique nor can more edges be added in
the subgraph induced by Si without lowering the domination number of G. Furthermore,
there are no edges between vertices in S and vertices in C.

It should be noted that a graph of Type X need not have a clique having the properties
of SC, and any of t, m or k is allowed to be 0. However, if such an SC is not in G, then
γ(G) = n = k + t +m. Also, if SC is not present and BC is empty, but S as well as C
are not empty, then the graph is disconnected. SC cannot be the only one of these which
is nonempty, since by definition its vertices must have neighbors outside SC.

Theorem 3.1. ([24]) Let G′ be a spanning subgraph of a graph G of Type X such that
γ(G′) = γ(G). Then Vizing’s conjecture is true for G′.
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The same authors showed that any graph whose domination number is one more than its
2-packing number is of Type X , thus establishing the following corollary to Theorem 3.1.

Corollary 3.2. ([24]) If G is a graph and γ(G) = ρ(G) + 1, then Vizing’s conjecture is
true for G.

4. Fair Reception

Recently Brešar and Rall [10] introduced the notion of a fair reception in a graph. It
uses an approach similar to that of Barcalkin and German, by partitioning a graph into
subgraphs that enjoy a condition like that in inequality (2). Yet the partition is more
general, since arbitrary subgraphs (not only cliques) are allowed in the partition, and also
there can be a special, external part Z.

Let S1, . . . , Sk be pairwise disjoint sets of vertices from a graph G with S = S1∪· · ·∪Sk,
and let Z = V (G) − S. We say that S1, . . . , Sk form a fair reception of size k if for any
integer ℓ, 1 ≤ ℓ ≤ k, and any choice of ℓ sets Si1, . . . , Siℓ the following holds: if D externally
dominates Si1 ∪ · · · ∪ Siℓ then

(3) |D ∩ Z| +
∑

j,Sj∩D 6=∅

(|Sj ∩D| − 1) ≥ ℓ.

That is, on the left-hand side we count all the vertices of D that are not in S, and for
vertices of D that are in some Sj, we count all but one from D ∩ Sj.

In any graph, any nonempty subset of the vertex set forms a fair reception of size 1.
Another example is obtained by taking a 2-packing and letting each set Si consist of
exactly one vertex of the 2-packing. Hence in any graph G there is a fair reception of
size ρ(G).

Given a graph G, the largest k such that there exists a fair reception of size k in G is
denoted by γF (G), and is called the fair domination number of G. For instance in C5 we
can let S1 be a single vertex and the vertices in its antipodal edge be S2, and obtain a fair
reception of size 2. Thus γF (C5) = 2 = γ(C5). We have the following basic observation
about the fair domination number.

Proposition 4.1. ([10]) For any graph G, ρ(G) ≤ γF (G) ≤ γ(G).

Proof. The first inequality has been established above. Suppose there is a graph G such
that r = γ(G) < γF (G) = k. Let A be a minimum dominating set, and assume that the
sets S1, . . . , Sk with Z = V (G) − S form a fair reception of size k in G. Since r < k, the
set A must be disjoint from at least one of these sets. Assume that A∩Si = ∅ for 1 ≤ i ≤ t
and that A ∩ Sj 6= ∅ for t+ 1 ≤ j ≤ k.

The set A externally dominates S1 ∪ · · · ∪St and so it follows from the definition of fair
reception that

t ≤ |A ∩ Z| +
∑

j,Sj∩A 6=∅

(|Sj ∩A| − 1)

= |A ∩ Z| +
k
∑

j=t+1

|Sj ∩A| − (k − t)

= |A| − k + t .
8



This immediately implies that k ≤ |A|, which is a contradiction. �

If the partition of V (G) into γF (G) sets (and an eventual set Z) obeys condition (3),
then similar arguments as in Theorem 2.2 can be used to deduce the following result.

Theorem 4.2. ([10]) For all graphs G and H,

γ(G 2H) ≥ max{γ(G)γF (H), γF (G)γ(H)}.
An application to Vizing’s conjecture is seen in the following obvious corollary.

Corollary 4.3. ([10]) If G is a graph with γF (G) = γ(G), then G satisfies Vizing’s
conjecture.

It is also easy to see the following fact.

Proposition 4.4. ([10]) Let G be a decomposable graph. Then a partition of the vertex
set into γ(G) cliques yields a fair reception of G of size γ(G) (in which S equals V (G)).

Note that a family of sets that forms a fair reception in a graph G also forms a fair
reception in any spanning subgraph of G. Hence by the above proposition, the class of
graphs G with γ(G) = γF (G) contains the class of BG-graphs as well. Thus, Theorem 4.2
is a generalization of the result by Barcalkin and German. The same authors [10] also
constructed an infinite family of graphs whose fair domination number and domination
number are equal but which are not covered by the Type X results.

The fair domination number of a graph is related to the invariant γi introduced by
Aharoni and Szabó [2]. Let γi(G) denote the maximum, over all independent sets M in
G, of the smallest cardinality of a set D that dominates M (i.e., such that M ⊆ N [D]).

Proposition 4.5. ([10]) For any graph G, γF (G) ≥ γi(G).

Proof. It is easy to see that we may assume G has no isolated vertices. Let I be an
independent set of vertices in G that requires k = γi(G) vertices to dominate, and suppose
that A = {x1, . . . , xk} dominates I. Because G has no isolated vertices we may assume
that A externally dominates I. Let the sets S1, . . . , Sk be a partition of I such that
Si ⊆ N(xi). We claim that S1, . . . , Sk form a fair reception in G. Indeed, to (externally)
dominate any subfamily of ℓ of these sets, one needs at least ℓ vertices, otherwise we easily
infer that I can be dominated by fewer than k vertices, which is a contradiction. Hence
γF (G) ≥ k = γi(G). �

As a corollary, we obtain the result of Aharoni and Szabó [2]:

Theorem 4.6. ([2]) For any G and H, γ(G 2H) ≥ γi(G)γ(H).

Aharoni, Berger and Ziv [1] showed that γi and γ agree on chordal graphs. Thus:

Corollary 4.7. ([2]) If G is a chordal graph, γ(G 2H) ≥ γ(G)γ(H) for any graph H.

Unfortunately, γi(G) can be arbitrarily smaller than γ(G), though it is at least ρ(G).

Question 4.8. What other classes of graphs satisfy γ = γi?

The relationship between γF (G) and γ(G) is murkier. We verified recently, using a
computer check of all appropriate partitions, that for the graph G from Figure 3, γF (G) =
γ(G) − 1. Note that G satisfies Vizing’s conjecture since it is of type X .

The following natural questions regarding the fair domination number are unresolved:
9



Question 4.9. Is there a general lower bound for γF (G) in terms of γ(G)? For example,
is γF (G) ≥ γ(G)−1 for every connected graph G? Does there exist a constant c > 1/2 such
that γF (G) ≥ c γ(G) for every graph G? Such a constant would imply (using Theorem 4.2)
that

γ(G 2H) ≥ c γ(G) γ(H) ,

for every G and H, an improvement over Theorem 5.1.

5. The Double-Projection Argument

In attacking Vizing’s conjecture, the following question is quite natural. Is there a
constant c > 0 such that

γ(G 2H) ≥ cγ(G)γ(H) ?

And, of course, hoping that the inequality with c = 1 could eventually be proved, the
question was stated explicitly in [22]. It was answered in the affirmative by Clark and
Suen in [14]. We next describe their idea that nicely incorporates the product structure
of G 2H.

Let H be a graph with γ(H) = k and let {h1, . . . , hk} be a minimum dominating set of
H. Consider a partition {π1, . . . , πk} of V (H) chosen so that hi ∈ πi and πi ⊆ N [hi] for
each i. Let Gi = V (G) × πi. For a vertex g of G the set of vertices {g} × πi is called an
H-cell, see Figure 4.

Figure 4. Clark-Suen partition

Let D be a minimum dominating set of G 2H. For i = 1, . . . , k, let ni be the number
of H-cells in Gi such that all vertices from the H-cell are dominated by D from within
the corresponding H-fiber. Then, considering the projection pG(D ∩ Gi), it follows that
|D ∩Gi| + ni ≥ γ(G) and thus

(4) |D| +
k
∑

i=1

ni ≥ γ(G)γ(H).

10



On the other hand, the projection pH(D∩ gH) gives γ(H) ≤ |D∩ gH|+(k−mg), where mg

denotes the number of cells in gH that are dominated by D from within gH. Consequently,
mg ≤ |D ∩ gH|. Hence,

(5) |D| ≥
∑

g∈G

mg .

Since the H-cells were counted in two ways, that is,
∑k

i=1 ni =
∑

g∈Gmg, the inequali-

ties (4) and (5) give:

Theorem 5.1. ([14]) For all graphs G and H,

γ(G 2H) ≥ 1

2
γ(G) γ(H).

The factor 1/2 of Theorem 5.1 comes from the double counting of the vertices of the
minimum dominating set D. Aharoni and Szabó [2] modified this approach to establish
their result about chordal graphs (Corollary 4.7).

We next demonstrate how Clark and Suen’s approach can be applied to claw-free graphs.

Theorem 5.2. Let G be a claw-free graph. Then for any graph H without isolated vertices,

γ(G 2H) ≥ 1

2
α(G)(γ(H) + 1) .

Proof. Let A = {g1, . . . , gα(G)} be a maximum independent set ofG, and let {h1, . . . , hγ(H)}
be a minimum dominating set of H. Let Π = {π1, . . . , πγ(H)} be a corresponding partition
of V (H), where hj ∈ πj and πj ⊆ N [hj ], j = 1, . . . , γ(H).

Let D be a minimum dominating set of G2H. Let xi = |D ∩ giH|, 1 ≤ i ≤ α(G). For
1 ≤ i ≤ α(G) and 1 ≤ j ≤ γ(H), set di,j = 1 if all the vertices of {gi} × πj are dominated
within the fiber giH, and set di,j = 0 otherwise.

Note first that xi ≥ ∑γ(H)
j=1 di,j. Indeed, if this was not the case, we could form a

dominating set of H with cardinality smaller than γ(H) by adding to pH(D ∩ giH) all
vertices hj for which di,j = 0.

Let I = {i1, . . . , ir} be the set of indices i, 1 ≤ i ≤ α(G), such that xi = 0. Note that
it is possible that I = ∅. Note also that

α(G)
∑

i=1

xi ≥ α(G) − r .

Let Bj = (V (G) −A) × πj . Consider the vertices of {gi} × πj . If di,j = 0, then at least
one of them is not dominated from giH, and since A is independent, this vertex must be
dominated by some vertex from Bj . Moreover, if i ∈ I, then every vertex of {gi} × πj

is dominated from Bj . Now, a vertex from Bj can dominate at most two vertices from
11



A× V (H) since G is claw-free and A is an independent set. Therefore,

γ(H)
∑

j=1

|D ∩Bj | ≥ 1

2





∑

i/∈I

γ(H)
∑

j=1

(1 − di,j) +
∑

i∈I

|H|





=
1

2



(α(G) − r)γ(H) −
∑

i/∈I

γ(H)
∑

j=1

di,j + r|H|



 .

Recall that xi ≥
∑γ(H)

j=1 di,j and since for all i ∈ I, di,j = 0, then

∑

i/∈I

γ(H)
∑

j=1

di,j =

α(G)
∑

i=1

γ(H)
∑

j=1

di,j ≤
α(G)
∑

i=1

xi .

Now, using the above three inequalities, we get

|D| =

γ(H)
∑

j=1

|D ∩Bj | +
α(G)
∑

i=1

xi

≥ 1

2





(

α(G) − r
)

γ(H) −
α(G)
∑

i=1

xi + r|H|



+

α(G)
∑

i=1

xi

=
1

2

(

α(G) − r
)

γ(H) +
r

2
|H| + 1

2

α(G)
∑

i=1

xi

≥ 1

2

(

α(G) − r
)

γ(H) +
r

2
|H| + 1

2

(

α(G) − r
)

=
1

2
α(G)

(

γ(H) + 1
)

+
r

2

(

|H| − γ(H) − 1
)

.

Since H has no isolated vertices, we have |H| ≥ γ(H) + 1 and the proof is complete. �

Since γ(G) ≤ α(G) holds for any graph G, we immediately get:

Corollary 5.3. Let G be a claw-free graph. Then for any graph H without isolated ver-
tices,

γ(G 2H) ≥ 1

2
γ(G)(γ(H) + 1) .

Corollary 5.3 does not follow from Theorem 4.6. This can be seen, for instance, by
letting G be the so-called cocktail party graph formed by removing a perfect matching
from K2n for n ≥ 2. Then G is claw-free, γ(G) = 2 and γi(G) = 1. Letting H = K2, we
get γ(G2K2) = 2 = 1

2γ(G)(γ(K2) + 1), but γi(G)γ(K2) = 1. Note too that Theorem 5.2
implies that a graph G satisfies Vizing’s conjecture whenever it is claw-free and satisfies
α(G) = 2γ(G). An infinite family of such graphs may be constructed following the example
of Figure 5.

In many cases we can slightly extend Theorem 5.2 as follows.
12



Figure 5. A claw-free graph with α(G) = 2γ(G)

Theorem 5.4. Let G be a claw-free graph. Let H be a graph without isolated vertices for
which |H| ≥ ∆(H) + γ(H) + 2. Then

γ(G 2H) ≥ 1

2
α(G)(γ(H) + 2) .

In particular, γ(G 2H) ≥ 1
2γ(G)(γ(H) + 2).

The proof of Theorem 5.4 is given in the appendix.

6. Properties of a Minimal Counterexample

A natural way to prove or disprove a conjecture in graph theory is to check for the
existence of a minimal counterexample. Suppose Vizing’s conjecture is false. Then, there
exists a graph G such that for some graph H, γ(G2H) < γ(G)γ(H). From among all such
graphs, G, choose one of smallest order. We call such a graph a minimal counterexample.

In this section we add to the list of properties that must be satisfied by any minimal
counterexample. As a consequence it might be possible to find such a counterexample or to
prove that Vizing’s conjecture is actually true for any graph satisfying all such conditions.
In the latter case the truth of the conjecture is established.

It is immediate that a minimal counterexample is connected. We may also assume that a
minimal counterexample is edge-critical with respect to domination (see Observation 2.1).
(For more information on edge-critical graphs see the survey [37].)

Suppose that u and v are distinct vertices in a graph G. Denote by Guv the graph
formed by identifying vertices u and v in G and then removing any parallel edges. For
reference purposes let w be the vertex in the identification of u and v. (If e = uv ∈ E(G),
then Guv is the usual graph obtained from G by contracting the edge e.) It is clear from
the definition that γ(Guv) ≤ γ(G). It is also easy to see that γ(Guv 2H) ≤ γ(G2H) for
any graph H. Indeed, if D is a minimum dominating set of G2H, then

D′ = (D − (uH ∪ vH)) ∪ { (w, h) | (u, h) ∈ D or (v, h) ∈ D }

dominates Guv 2 H. Using this, we can now establish another property of any minimal
counterexample.

Theorem 6.1. If G is a minimal counterexample to Vizing’s conjecture, then for every
pair of distinct vertices u and v of G, γ(Guv) < γ(G).

13



Proof. Let H be a graph such that γ(G 2 H) < γ(G)γ(H), and let u and v be distinct
vertices of G. Then, Guv satisfies Vizing’s conjecture. It follows that

γ(Guv)γ(H) ≤ γ(Guv 2H) ≤ γ(G 2H) < γ(G)γ(H) .

The conclusion of the theorem follows. �

Cycles of order 3n+ 1 satisfy the conclusion of Theorem 6.1 as does any graph formed
from a connected graph by adding a single leaf adjacent to each vertex.

Problem 6.2. Characterize the graphs G such that for every pair of distinct vertices u
and v in G, γ(Guv) < γ(G).

Among the consequences of Theorem 6.1, it follows that a minimal counterexample
cannot have a vertex adjacent to two or more vertices of degree one, nor can any vertex
have two neighbors, each of degree two, that are adjacent to each other. In addition, we
also have the following corollary.

Corollary 6.3. If G is a minimal counterexample to Vizing’s conjecture, then for any
vertex u of G, there exists a minimum dominating set D that contains u. Moreover, for
any edge uv in G, there exists a minimum dominating set D such that either both u and
v are in D, or u is in D and one of u or v is the only private neighbor of u with respect
to D.

Proof. Let u and v be any two adjacent vertices of G, denote by w the vertex of Guv

obtained by the identification of u and v. Consider a minimum dominating set D′ of Guv .
If the added vertex w is in D′, let D = (D′ − {w}) ∪ {u, v}; otherwise let D = D′ ∪ {u}.
In both cases, it is easy to check that D dominates G. Moreover, |D| = |D′|+1, and since
γ(G) > γ(Guv) = |D′|, we deduce that D is a minimum dominating set of G that contains
u. Finally, in the first case, D contains both u and v. In the second case, all the vertices
in G except u or v are dominated by D − {u}, so u or v is the only private neighbor of u
with respect to D. �

This property should be considered in relation to the study of the set of vertices be-
longing to all, to some, or to no minimum dominating sets started by Mynhardt [35]. This
study followed the initiative by Hammer et al. for stable sets [21].

In 2004 Liang Sun [38] proved that Vizing’s conjecture holds for every graph G such
that γ(G) = 3. (The paper [5] proved that the inequality in Vizing’s conjecture holds if
both factors have domination number 3.) This, together with the result of Barcalkin and
German, implies that the conjecture holds for any G with γ(G) ≤ 3.

There are various relationships that exist between the classes of graphs that have been
shown to satisfy Vizing’s conjecture. For example, every BG-graph and every graph G
with γ(G) ≤ ρ(G) + 1 is of Type X . Also, γ(G) = γi(G) = γF (G) if G is chordal.

By combining results from the first part of this survey together with those derived in
this section, we see that any minimal counterexample G must satisfy all of the following
conditions.

• γ(G) ≥ 4;
• G is not of Type X ;
• γF (G) < γ(G);

14



• G is edge-critical and γ(Guv) < γ(G) for all pairs of vertices u, v in G;
• Every vertex of G belongs to a minimum dominating set.

Our purpose in the remainder of this section is two-fold: to consider a candidate graph
for a possible counterexample to Vizing’s Conjecture and to extend the reasoning in Sec-
tion 3 to include more general graphs. Whereas the one-half argument (Section 3) es-
sentially “shared” vertices from one copy of a graph between two copies, we now wish to
consider the situation where these vertices may be needed in three different copies. For
instance, considering the graph G in Figure 6, we observe that γ(G) = 5, the 2-packing
number of G is 3 (implying that G is not of Type X ), and G is edge-critical. We also think
that γF (G) < 5 although we were not able to verify it (the invariant γF is often difficult
to compute). Hence, according to the list of conditions above, it is a possible candidate
for a counterexample to Vizing’s conjecture. We will (perhaps unfortunately!) show this
is not the case by modifying the one-half argument.

Figure 6. The graph G

We first establish a lemma that will be needed in the argument.

Lemma 6.4. Let G be a connected graph of order n ≥ 2 and assume that V (G) =
V1 ∪ V2 ∪W where no vertex in V1 is adjacent to any vertex in V2. For i = 1, 2 let γi(G)
denote the minimum cardinality of a set of vertices of G that dominates Vi, and let γ(G)
denote the domination number of G. Then,

γ1(G) + γ2(G) + γ(G) ≤ n .

Proof. We prove the statement for trees. The lemma will follow in general since these
three numbers γ1(G), γ2(G), γ(G) are no larger than the corresponding numbers for any
spanning tree of G.

The statement clearly holds for the only tree of order 2. Assume the result holds
for all nontrivial trees of order at most k and let T be any tree of order k + 1. Let
V (T ) = V1 ∪ V2 ∪W and assume no vertex in V1 is adjacent to any vertex in V2. The
result clearly holds if T is a star. Otherwise, let v be a vertex of degree one at the end of
a longest path in T and let w be its unique neighbor. Let R denote the other degree one
neighbors (if any) of w. Let T ′ be the tree T − ({v,w} ∪R).

By induction γ1(T
′) + γ2(T

′) + γ(T ′) ≤ |T ′|, where we are assuming V (T ′) inherits the
partition from that of V (T ). It is clear that γ(T ) ≤ γ(T ′) + 1. If R = ∅, then at most one
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of V1, V2 intersects {v,w}. On the other hand, if R 6= ∅, then |T | ≥ |T ′| + 3 and since w
dominates R ∪ {v}, it follows immediately that

γ1(T ) + γ2(T ) + γ(T ) ≤ γ1(T
′) + γ2(T

′) + γ(T ′) + 3 .

�

We will now show that the graph G from Figure 6 satisfies Vizing’s conjecture. (This
generalizes the one-half argument as described in Section 3.) To that end let H be an
arbitrary graph and let D be a minimum dominating set of the Cartesian product G2H.
For an arbitrary vertex g of G we denote the intersection of D with the fiber gH by Dg.
Label the vertices of G and select pairs of its vertices as shown in Figure 7.

s t

a d

xwvu

r

z

cb

y

B D D B

X

1 1 2 2

Figure 7. Labeled graph G

While D dominates all of G2H, to show that γ(G2H) ≥ γ(G)γ(H) we will show that
|D| ≥ 5γ(H) to dominate rH ∪ sH ∪ tH ∪ vH ∪ wH.

First we note that if each of Dr, Ds, Dt, Dv and Dw contains at least γ(H) vertices,
then |D| ≥ 5γ(H).

Thus, we assume this is not the case. We associate the color 1 (respectively, 2, 3, 4, 5)
with the H-fiber rH (respectively, sH, tH, vH, wH). We will color each vertex of H with
a subset of {1, 2, 3, 4, 5} in such a way that the subset of V (H) colored i dominates H for
each 1 ≤ i ≤ 5. The subset assigned to each vertex will accumulate during the course
of the argument below. As these assignments are made, the total number of assignments
will not exceed |D|. We begin by assigning color 1 (respectively, 2, 3, 4 or 5) to each
vertex h for which (r, h) belongs to Dr (respectively, (s, h) ∈ Ds, (t, h) ∈ Dt, (v, h) ∈ Dv ,
(w, h) ∈ Dw).

We say that a vertex h of H is on the missing fiber list at r if the vertex (r, h) is not
dominated by Dr. Denote this missing fiber list by Lr. Note that if h ∈ Lr, then at least
one of (y, h) and (z, h) is in D. Similarly, let Ls and Lt be the missing fiber lists at s and
t, respectively.
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Let fX denote the map from Dy to zH given by fX(y, h) = (z, h) and let D′
z denote

Dz∪fX(Dy). In an analogous way we formD′
u,D

′
v ,D

′
w andD′

x by doing similar projections
of the subset of D in the H-fibers located at clear vertices within B1 × V (H),D1 ×
V (H),D2 × V (H), and B2 × V (H) onto the H-fibers specified by the solid vertices. Let
us say that a vertex h from H has weight 1 in B1 if exactly one of (a, h) or (u, h) is in D.
If both of these vertices are in D we say h has weight 2 in B1. The weight of h in each of
D1,D2, B2 and X is defined in a similar way.

As we did above for r, s and t, we define missing fiber lists Lv and Lw. However, here
we say for example, that h ∈ Lv if (v, h) is not dominated by D′

v (instead of, if (v, h) is not
dominated by Dv). We are not concerned with missing fiber lists at u, x and z. Rather,
the focus is on the connected components of the subgraphs induced by D′

u, D′
x and D′

z.
Each such component is an isolated vertex or has order at least two. In the case where

one of these components has order at least two the complement of a minimal dominating
set is also a dominating set. We will make use of the fact that such a component has two
disjoint dominating sets.

Consider a component C in the subgraph induced by D′
u. If C has order at least two,

then choose a minimal dominating set A of C. Assign color 2 to any vertex k for which
(u, k) ∈ A and assign color 4 to k if (u, k) ∈ C − A. If C has order 1, say C = {(u, k)},
then there are two possibilities. If k has weight two in B1, then assign colors 2 and 4 to
k. Finally, assume k has weight one in B1. We observe that k cannot be on the missing
fiber lists at both s and v because D dominates both of (a, k) and (u, k) (in fact, at least
one of (s, k), (b, k), (v, k) is in D). If k ∈ Ls, assign color 2 to k; if k ∈ Lv, assign color 4
to k. The components of the subgraph induced by D′

x are handled in a similar manner.
We now make the important observation that if a vertex h is on the missing fiber list

at s, then color 2 has been assigned to h or to a neighbor of h. Thus, the vertices having
color 2 in their list dominate H. The same is true for the vertices having color 3 in their
list. Also, if a vertex k is on the missing fiber list Lv and (u, k) ∈ D′

u, then either k or
one of its neighbors has been assigned the color 4. Furthermore, if vertex k is in Lv and
(u, k) /∈ D′

u, then (w, k) ∈ D, and hence neither k nor any of its neighbors in H belongs
to Lw. Similar statements hold in regard to such a vertex of H relative to Lw.

Suppose that k ∈ Lv and color 4 has not yet been assigned to k or one of its neighbors.
Then (u, k) /∈ D′

u and (w, k) ∈ D. Assume that (z, k) /∈ D′
z. Then k /∈ Lr for otherwise

the vertex (r, k) would not be dominated. Now we ask which vertex dominates (b, k). It
can be neither (y, k) nor (z, k) because (z, k) /∈ D′

z. Similarly, since (u, k) /∈ D′
u it is also

not dominated by (u, k) or (a, k). Hence (b, k) must be dominated by (c, k). Then both
(c, k) and (w, k) are in D and we may assign color 4 to k. The same can be done for color
5. If some vertex k is not dominated by a vertex assigned color 4 or 5 then (z, k) ∈ D′

z .
Note also that (z, k) ∈ D′

z when k ∈ Lr. We therefore only need to deal with the vertices
in D′

z.
Consider a component C = {(z, k)} of order one in D′

z. There are three cases to handle:
k is in both, neither or exactly one of Lv,Lw. Suppose that k ∈ Lv ∩ Lw. Since D
dominates both (v, k) and (w, k) this implies that k has weight at least one in both of B1

and B2. As noted above, either k or one of its neighbors in H has been assigned color 4.
The same is true about color 5. Thus we can assign color 1 to k.

Assume next that k /∈ Lv ∪ Lw. In this case we assign color 1 to k.
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Finally, assume that k belongs to exactly one of the two missing fiber lists Lv and Lw.
Without lost of generality we suppose that k ∈ Lv and k is not in Lw. From the previous
observation we may assume that (u, k) /∈ D′

u. As noted above this implies that (w, k)
belongs to D and neither k nor any of its neighbors in H belongs to Lw. If k /∈ Lr, assign
color 4 to k. If, on the other hand, k belongs to Lr, then because D dominates both
of (y, k) and (z, k) it follows that (c, k) is also in D or k has weight two in X. In both
instances we assign colors 1 and 4 to k.

We are thus led to the final case in which we consider a component C in D′
z of order

at least two. Let (z, h) ∈ C. As with a component of order one, we have already handled
the situation in which h ∈ Lv ∩ Lw (from B1 and B2). Place (z, h) in V1 if h ∈ Lv − Lw

and place (z, h) in V2 if h ∈ Lw − Lv. Let W = C − (V1 ∪ V2). By our observation above
no vertex of V1 is adjacent to any vertex of V2. We apply Lemma 6.4 and infer that there
exist subsets A1, A2 and A of C such that Ai dominates Vi, for 1 ≤ i ≤ 2, A dominates C
and |A1|+ |A2|+ |A| ≤ |C|. These subsets of C need not be disjoint. If (z, h) ∈ A1, assign
color 4 to h. If (z, h) ∈ A2, assign color 5 to h. Finally assign color 1 to any h for which
(z, h) ∈ A. We have assigned |A1| + |A2| + |A| colors which is at most |C|.

It now follows that the set of vertices having color 1 (respectively, 4 or 5) dominates H.
Combining this with our earlier conclusion about colors 2 and 3 we have shown

γ(G 2H) = |D| ≥ 5γ(H) = γ(G)γ(H) .

7. Additional Approaches

Attachable Sets. Suppose that a graph G1 has a subset S1 of vertices such that for every
graph H it is the case that |D| ≥ γ(G1)γ(H) whenever D is a subset of V (G1 2H) that
dominates (V (G1) − S1) × V (H). Then clearly Vizing’s conjecture holds for G1. In this
case S1 is called an attachable set of G1. For example, Hartnell and Rall showed in [23]
that any independent set of vertices in C5 is an attachable set. In fact, the following result
is proved.

Theorem 7.1. ([23]) Cycles of the form C3k and C3k+2 have attachable sets. No cycle of
the form C3k+1 has an attachable set.

Another way to get a graph G′ with an attachable set is to start with any graph G that
satisfies the conjecture and any vertex v of G that belongs to some minimum dominating
set of G. Construct G′ by adding to G a new vertex v′, the edge vv′, and any additional
subset of edges that join v′ to neighbors of v in G. Then {v′} is an attachable set of
G′. If v′w ∈ E(G′) such that w 6= v and w belongs to a minimum dominating set of G,
then the edge vv′ can be removed from G′. The set {v′} is attachable in the resulting
graph. See [23] for additional details. This provides, for example, another way to see that
complete bipartite graphs satisfy Vizing’s conjecture.

The use of graphs with attachable sets is illustrated by the following construction.
Suppose Si is an attachable set of Gi for i = 1, 2. Let G be the graph built from the
disjoint union of G1 and G2 by adding any subset of the edges that join a vertex in S1

with a vertex in S2. It is easy to show that G satisfies Vizing’s conjecture, and, in fact,
that S1 ∪ S2 is an attachable set of G.
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Degree Conditions on Pairs of Graphs. Recall that one says that a graph G satisfies
Vizing’s conjecture if inequality (1) holds for every graph H. The majority of known
results on the conjecture gives classes of graph that satisfy the conjecture. Alternatively,
one could also try to prove that the inequality holds for given pairs of graphs, an
approach followed by Clark, Ismail and Suen in [12]. We give two of their results.

Theorem 7.2. ([12]) Let G and H be d-regular graphs where d ≤ 3 or d ≥ 27. Then
γ(G 2H) ≥ γ(G)γ(H).

A natural question arising from the above theorem is:

Question 7.3. Can one prove that all cubic graphs satisfy Vizing’s conjecture?

Theorem 7.4. ([12]) Let G and H be graphs of order at most n, and let δ(G), δ(H) ≥√
n lnn. Then γ(G 2H) ≥ γ(G)γ(H).

The approach used in [12] is the following. Clearly,

γ(G 2H) ≥
⌈ |G 2H|
∆(G 2H) + 1

⌉

.

Suppose we have a general upper bound on the domination number of an arbitrary graph
in terms of its number of vertices, minimum and maximum degree, and that the product
of such upper bounds for G and H is bounded above by ⌈|G2H|/(∆(G2H)+ 1)⌉. Then
the inequality in Vizing’s conjecture holds for the pair G,H. Upper bounds applied in
this approach are the following well known bound due to Arnautov [3]

γ(G) ≤ n
1 + ln(δ + 1)

δ + 1

and its extension from [13].

Pairs that Attain Equality. The reason that Vizing’s conjecture is so difficult lies also
in the fact that it is hard to determine or bound the domination number of a graph,
especially if it is not very small. As a consequence it is very difficult to verify that a
counterexample has been found. Perhaps surprisingly, many classes of pairs of graphs for
which the equality is achieved in (1) have been discovered; the complete list of these classes
can be found in [22]. Let us just mention the following easy example. Let G be the graph
obtained from G′ by attaching a leaf to each of its vertices, and let H be the 4-cycle with
a and c as nonadjacent vertices. Then D = {(x, a) |x ∈ G′} ∪ {(y, c) | y ∈ G − G′} is a
dominating set of G2H with |D| = |G|. It is easy to see that D is a minimum dominating
set of G 2H and that γ(G) = |G|/2. Hence we have γ(G 2 C4) = γ(G)γ(C4).

On the other hand, there are graphs for which equality is never achieved in (1) as soon
as the other factor is nontrivial [25, 26]. For instance, any tree that has a vertex adjacent
to at least two leaves has this property.

8. Vizing-Type Theorems for Related Domination Invariants

In this section, we survey versions of Vizing’s conjecture for various domination-type
invariants, including fractional, total, independent, and integer domination. In particular,
Theorem 5.1 can be generalized in several ways.
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Fractional Domination. A function f : V (G) → [0, 1] defined on the vertices of a graph
G is called a fractional-dominating function if the sum of its function values over any
closed neighborhood is at least 1. The weight of a fractional-dominating function is the
sum of its function values over all vertices. The fractional domination number of G,
denoted γf (G), is the minimum weight of a fractional-dominating function. Note that the
characteristic function of a dominating set of G is a fractional-dominating function, and
so γf (G) ≤ γ(G). The fractional version of Vizing’s Conjecture was established by Fisher,
Ryan, Domke, and Majumdar [20].

Theorem 8.1. ([20]) For any graphs G and H, γf (G 2H) ≥ γf (G) γf (H).

In 2001, Brešar [5] gave a straightforward proof of the related result, originally proved
by Fisher:

Theorem 8.2. ([19]) If G and H are connected graphs, then

γ(G 2H) ≥ γf (G)γ(H) .

This theorem shows that Vizing’s conjecture is true for graphs (e.g., trees, strongly
chordal) for which the fractional domination number and domination number are equal.

The proof technique of [5] involved the following concept. Let f be a function that
assigns to each vertex v of G a subset (possibly empty) of V (H). For each vertex v ∈ V (G)
we require

(6)





⋃

u∈f(v)

NH [u]



 ∪





⋃

z∈NG(v)

f(z)



 = V (H) .

It is clear how each such function f corresponds to a dominating set of G2H (one forms
a dominating set for G 2 H by taking the union of all subsets of the form {v} × f(v)),
and conversely. The graph domination number of G with respect to H, denoted γH(G), is
defined by

γH(G) = min
f

{

∑

v∈V (G)

|f(v)|
}

,

where the minimum is taken over all functions f as defined above and satisfying equa-
tion (6).

Observation 8.3. ([5]) A graph G satisfies Vizing’s conjecture if and only if

γH(G) ≥ γ(G)γ(H)

for all graphs H.

Total Domination. A total dominating set of a graph G with no isolated vertex is a set
S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination
number of G, denoted by γt(G), is the minimum cardinality of a total dominating set. It
was conjectured in [29] that the product of the total domination numbers of two graphs
without isolated vertices is bounded above by twice the total domination number of their
Cartesian product. This conjecture was solved by Ho [30].
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Theorem 8.4. ([30]) For any graphs G and H without isolated vertices, γt(G 2 H) ≥
1
2γt(G)γt(H).

In the case when at least one of G or H is a nontrivial tree, those graphs for which
γt(G 2H) = 1

2γt(G)γt(H) are characterized in [29].

Theorem 8.5. ([29]) Let G be a nontrivial tree and H any graph without isolated vertices.
Then, γt(G 2H) = 1

2γt(G)γt(H) if and only if γt(G) = 2γ(G) and H consists of disjoint
copies of K2.

It remains, however, an open problem to characterize the graphs G and H that achieve
equality in the bound of Theorem 8.4.

Brešar et al. [8] established the following result on the total domination number of the
Cartesian product G 2H.

Theorem 8.6. ([8]) For any graphs G and H without isolated vertices,

γt(G 2H) ≥ max{γt(G)ρ(H), γt(H)ρ(G)}.

Integer Domination. For k ≥ 1, a function f : V (G) → {0, 1, . . . , k} defined on the
vertices of a graph G is called a {k}-dominating function, abbreviated kDF, if the sum of
its function values over any closed neighborhood is at least k [15]. The weight of a kDF
is the sum of its function values over all vertices. The {k}-domination number, denoted
γ{k}(G), of G is the minimum weight of a kDF. Note that the characteristic function of a
dominating set of G is a {1}-dominating function, and so γ{1}(G) = γ(G). This type of
domination is referred to as integer domination. It and fractional domination are related
as follows.

Theorem 8.7. ([15]) For any graph G, γf (G) = mink∈N γ{k}(G)/k.

The simplest version of Vizing’s conjecture γ{k}(G 2 H) ≥ γ{k}(G) γ{k}(H) for {k}-
domination is trivially false, failing even for G = H = K1. Rather, the natural version is
obtained from normalizing the invariant by dividing it by k. Rearranged, this conjecture
is:

Conjecture 8.8. ([31]) For any k ≥ 1 and graphs G and H,

γ{k}(G 2H) ≥ 1

k
γ{k}(G)γ{k}(H).

A couple of partial results are known:

Theorem 8.9. ([7]) For any graphs G and H,

γ{k}(G 2H) ≥ 1

k(k + 1)
γ{k}(G)γ{k}(H).

Theorem 8.10. ([7]) Let ψ(G,H) = min
{

|H|(kγ(G)− γ{k}(G)), |G|(kγ(H)− γ{k}(H))
}

.
Then for any graphs G and H, 2kγ{k}(G 2H) + kψ(G,H) ≥ γ{k}(G)γ{k}(H).
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When k = 1, Theorems 8.9 and 8.10 simplify to γ(G 2 H) ≥ 1
2γ(G)γ(H), which is

Theorem 5.1. The following questions from [7] remained unresolved, even though the
second one is very weak:

Question 8.11. Is it true that for any graphs G and H, γ{2}(G 2 H) ≥ γ(G)γ(H)?
Failing which, is there some k such that γ{k}(G 2H) ≥ γ(G)γ(H) for any pair of graphs
G and H?

Theorem 8.4 can be extended to integer total domination. For k ≥ 1 an integer, a
function f : V (G) → {0, 1, . . . , k} is a total {k}-dominating function, abbreviated TkDF,
if the sum of its function values over any open neighborhood is at least k. The total

{k}-domination number, denoted γ
{k}
t (G), of G is the minimum weight of a TkDF. Note

that the characteristic function of a total dominating set of G is a total {1}-dominating

function, and so γ
{1}
t (G) = γt(G). Total {k}-domination is also referred to as integer total

domination.
The following version of Vizing’s conjecture for the total {k}-domination number holds:

Theorem 8.12. ([33]) For k ≥ 1 an integer, and for any graphs G and H without isolated
vertices,

γ
{k}
t (G 2H) ≥ 1

k(k + 1)
γ
{k}
t (G) γ

{k}
t (H).

When k = 1, Theorem 8.12 gives Theorem 8.4.

Paired-Domination. A matching in a graph G is a set of independent edges in G. A
perfect matching M in G is a matching in G such that every vertex of G is incident to
an edge of M . A paired-dominating set, abbreviated PDS, of a graph G is a dominating
set S of G such that the subgraph G[S] induced by S contains a perfect matching M
(not necessarily induced). Every graph without isolated vertices has a PDS since the end-
vertices of any maximal matching form such a set. The paired-domination number of G,
denoted by γpr(G), is the minimum cardinality of a PDS; see [27, 28].

A version of Vizing’s Conjecture for the paired-domination number is studied in [8].
For this purpose, recall that for k ≥ 2, a k-packing in a graph G was defined by Meir
and Moon [34] as a set S of vertices of G that are pairwise at distance greater than k
apart, i.e., if u, v ∈ S, then dG(u, v) > k. The k-packing number of G, denote ρk(G),
is the maximum cardinality of a k-packing in G. We have written ρ2 as ρ. Brešar et
al. [8] observed that it is not true that for every pair of graphs G and H, γpr(G 2H) ≥
max{γpr(G)ρ(H), γpr(H)ρ(G)}. For example, let G be the graph obtained from K4 by
attaching to each vertex a leaf and let H = C9. Then, ρ(G) = 4 and γpr(H) = 6, whence
γpr(G2H) ≤ 22 < 24 = γpr(G)ρ(H). However, they observed that the 3-packing number
related to the paired-domination number plays a similar role as the packing number related
to the usual domination number.

Theorem 8.13. ([8]) For any graphs G and H without isolated vertices,

γpr(G 2H) ≥ max{γpr(G)ρ3(H), γpr(H)ρ3(G)}.
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It was shown in [8] that every nontrivial tree T has γpr(T ) = 2ρ3(T ). Hence we have
the following corollary of Theorem 8.13.

Theorem 8.14. ([8]) Let T be a nontrivial tree and H any graph without isolated vertices.
Then,

γpr(T 2H) ≥ 1

2
γpr(T )γpr(H),

and this bound is sharp.

We remark that it is not true in general that for any graphs G and H without isolated
vertices, γpr(G 2 H) ≥ 2ρ(G)ρ(H). For example, letting G = H = P4, we have that
γpr(G 2H) = 6 while ρ(P4) = 2, and so γpr(G 2H) < 2ρ(G)ρ(H). On the other hand:

Theorem 8.15. ([8]) For any graphs G and H without isolated vertices,

γpr(G 2H) ≥ 2ρ3(G)ρ3(H).

Upper Domination. The maximum cardinality of a minimal dominating set in a graph
G is the upper domination number of G, denoted by Γ(G). In 1996, Nowakowski and
Rall [36] made the natural Vizing-like conjecture for the upper domination of Cartesian
products of graphs. A proof was found by Brešar.

Theorem 8.16. ([6]) For any graphs G and H, Γ(G 2H) ≥ Γ(G) Γ(H).

The maximum cardinality of a minimal total dominating set of G is the upper total
domination number of G, denoted by Γt(G). A Vizing-like bound for the upper total
domination number of Cartesian products of graphs was established by Dorbec et al. [16].

Theorem 8.17. ([16]) Let G and H be connected graphs of order at least 3 with Γt(G) ≥
Γt(H). Then,

Γt(G 2H) ≥ 1

2
Γt(G)(Γt(H) + 1),

and this bound is sharp.

9. Stronger and Weaker Conjectures

In this section we give several conjectures and questions. Some of them are stronger
than Vizing’s conjecture meaning an affirmative answer would imply the conjecture, while
others would follow from the truth of Vizing’s conjecture.

The bg-Conjecture. The clique cover number Θ(G) of a graph G is the minimum
number of complete subgraphs of G that cover V (G). Note that Θ(G) = χ(G), and
γ(G) ≤ Θ(G) since a dominating set for G can be formed by choosing a single vertex from
each of the Θ(G) cliques that belong to the cover. Barcalkin and German’s [4] decompos-
able graphs are those with γ(G) = Θ(G). Denote by E(G) the collection of all edge-critical
graphs, G′, such that G is a spanning subgraph of G′ and γ(G′) = γ(G). Theorem 2.2 can
now be stated using these invariants.

Theorem 9.1. If there exists a graph G′ ∈ E(G) such that Θ(G′) = γ(G), then for every
graph H, γ(G 2H) ≥ γ(G) γ(H).
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Of course, not all graphs satisfy the hypothesis of Theorem 2.2, but it suggests another
conjecture whose truth would imply Vizing’s conjecture. Let bg(G) denote the minimum
value of Θ(G′), where the minimum is taken over all G′ ∈ E(G). Clearly, for any graph
G, γ(G) ≤ bg(G), and G satisfies the hypothesis of Theorem 2.2 if and only if these two
invariants have the same value.

If we could show that γ(G 2H) ≥ γ(G) bg(H), then Vizing’s conjecture would follow.
This inequality is not true, in general. This can be seen by letting G = B1 and H = B2

from Figure 2; γ(B1) = 3, bg(B1) = 4, γ(B2) = 4 and bg(B2) = 6. The set ({a, b, c, d} ×
{1, 7})∪({e, f, g, h}×{2, 8}) dominates B12B2 and thus, γ(B12B2) ≤ 16 < γ(B1) bg(B2).

However, the truth of the following conjecture would also establish Vizing’s conjecture.

Conjecture 9.2. For any pair of graphs G and H,

γ(G 2H) ≥ min{bg(G)γ(H), bg(H)γ(G) } .
The same graph B2 as above could possibly produce a counterexample to Conjecture 9.2

if one can compute γ(B2 2B2) and show it is less than 24.

Rainbow Domination. Let G be a graph and let f be a function that assigns to each
vertex a set of colors chosen from the set {1, . . . , k}; that is, f : V (G) → P({1, . . . , k}). If
for each vertex v ∈ V (G) such that f(v) = ∅, we have

⋃

u∈N [v]

f(u) = {1, . . . , k},

then f is called a k-rainbow dominating function (kRDF) of G. The weight, w(f), of a
function f is defined as w(f) =

∑

v∈V (G) |f(v)|. Given a graph G, the minimum weight of

a kRDF is called the k-rainbow domination number of G, which we denote by γrk(G). (A
1RDF is just a dominating set.)

Rainbow domination in a graph G has a natural connection with the study of γ(G2Kk).
It is easy to verify the following equality.

Observation 9.3. ([9]) For k ≥ 1 and for any graph G, γrk(G) = γ(G 2Kk).

The introduction of rainbow domination was motivated by the study of paired-domination
in Cartesian products of graphs, where certain upper bounds can be expressed in terms
of rainbow domination. The following innocent question posed in [9] remains open.

Question 9.4. Is it true that for any graphs G and H, γr2(G 2H) ≥ γ(G)γ(H)?

Since 2γ(G2H) ≥ γr2(G2H), this conjecture is stronger than the result of Clark and
Suen (Theorem 5.1), and since γr2(G 2 H) ≥ γ(G 2 H) it is a consequence of Vizing’s
conjecture. Even if γr2 is replaced by γrk for an arbitrary k in Question 9.4, we do not
know how to prove the resulting inequality.

Independent Domination. There are a number of possible inequalities similar to Viz-
ing’s conjecture for independent domination number. Several stronger ones are false:

Observation 9.5. There exist nontrivial graphs G and H such that i(G2H) < i(G)γ(H).
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Proof. Let G be the graph of order 11 that is constructed from K3 by adding 2 leaves
adjacent to one vertex x of K3, 3 leaves adjacent to a second vertex y of K3 and 3 leaves
adjacent to the third vertex z of K3. It is clear that i(G) = 6. Let H = G; then
γ(H) = 2 = i(H). However, i(G 2H) = 11. �

This pair of graphs also shows that there are graphs with γ(G 2H) < i(G)γ(H), and
i(G 2H) < i(G)i(H). Nevertheless, here is a related conjecture.

Conjecture 9.6. For all graphs G and H,

γ(G 2H) ≥ min{i(G)γ(H), i(H)γ(G)} .
The truth of Conjecture 9.6 would imply Vizing’s conjecture. On the other hand, the

following conjecture
i(G 2H) ≥ γ(G)γ(H)

is a consequence of Vizing’s conjecture. Perhaps this could be proven without first proving
Vizing’s conjecture.

Partition Conjecture. Vizing’s conjecture would follow from the following conjecture.

Conjecture 9.7. For any graph G, there exists a partition of V (G) into γ(G) sets
A1, . . . , Aγ(G) such that for any graph H, there is a minimum dominating set, D, of G2H
such that the projection pH(D ∩ (Ai × V (H))) dominates H for all i, 1 ≤ i ≤ γ(G).

10. Conclusion - work in progress

Vizing’s conjecture is that the domination number of the Cartesian product of graphs
G and H is at least as large as the product of their domination numbers. Starting with
the paper of Barcalkin and German [4], the inequality has been proven for all H and
several families of G that admit a suitable partition, such as chordal graphs. In a different
direction, a relaxed inequality was proven for all pairs by Clark and Suen [14]. In contrast,
several similar bounds were established for other, related graph invariants. In this paper
we provided additional properties of a minimal counterexample, if it exists, and improved
bounds on claw-free graphs.

A common thread running through almost all the progress is to bound the size of a
dominating set of G 2 H by partitioning it or projecting it and thereby relating it to
dominating sets of G and H. It is unclear whether this approach will be able to prove
the conjecture. On the other hand, a few researchers suspect that it might not be true
after all, and base their doubt on the fact that the conjectured inequality is proven sharp
for several rather different families of pairs of graphs (so there “should” also be pairs of
graphs which contradict the conjecture...). Indeed, forty years later, Vizing’s conjecture
remains unresolved. Even partial results have proven difficult. It will be interesting to see
what the next decades will bring.

References

[1] R. Aharoni, E. Berger, and R. Ziv. A tree version of Kőnig’s theorem. Combinatorica, 22(3):335–343,
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[10] B. Brešar and D. F. Rall. Fair reception and Vizing’s conjecture. J. Graph Theory, 61:45–54, 2009.
[11] G. Chen, W. Piotrowski, and W. Shreve. A partition approach to Vizing’s conjecture. J. Graph Theory,

21(1):103–111, 1996.
[12] W. E. Clark, M. E. H. Ismail, and S. Suen. Application of upper and lower bounds for the domination

number to Vizing’s conjecture. Ars Combin., 69:97–108, 2003.
[13] W. E. Clark, B. Shekhtman, S. Suen, and D. C. Fisher. Upper bounds for the domination number of a

graph. In Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics,
Graph Theory and Computing (Boca Raton, FL, 1998), volume 132, pages 99–123, 1998.

[14] W. E. Clark and S. Suen. An inequality related to Vizing’s conjecture. Electron. J. Combin., 7:Note
4, 3 pp. (electronic), 2000.

[15] G. S. Domke, S. T. Hedetniemi, R. C. Laskar, and G. Fricke. Relationships between integer and
fractional parameters of graphs. In Graph theory, combinatorics, and applications, Vol. 1 (Kalamazoo,
MI, 1988), Wiley-Intersci. Publ., pages 371–387. Wiley, New York, 1991.

[16] P. Dorbec, M. A. Henning, and D. F. Rall. On the upper total domination number of Cartesian
products of graphs. J. Comb. Optim., 16(1):68–80, 2008.

[17] M. El-Zahar and C. M. Pareek. Domination number of products of graphs. Ars Combin., 31:223–227,
1991.

[18] R. J. Faudree, R. H. Schelp, and W. E. Shreve. The domination number for the product of graphs.
In Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and
Computing (Boca Raton, FL, 1990), volume 79, pages 29–33, 1990.

[19] D. C. Fisher. Domination, fractional domination, 2-packing, and graph products. SIAM J. Discrete
Math., 7(3):493–498, 1994.

[20] D. C. Fisher, J. Ryan, G. Domke, and A. Majumdar. Fractional domination of strong direct products.
Discrete Appl. Math., 50(1):89–91, 1994.

[21] P. L. Hammer, P. Hansen, and B. Simeone. Vertices belonging to all or to no maximum stable sets of
a graph. SIAM J. Algebraic Discrete Methods, 3(4):511–522, 1982.

[22] B. Hartnell and D. F. Rall. Domination in Cartesian products: Vizing’s conjecture. In Domination in
graphs, volume 209 of Monogr. Textbooks Pure Appl. Math., pages 163–189. Dekker, New York, 1998.

[23] B. L. Hartnell and D. F. Rall. On Vizing’s conjecture. In Proceedings of the Twenty-second South-
eastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991), vol-
ume 82, pages 87–96, 1991.

[24] B. L. Hartnell and D. F. Rall. Vizing’s conjecture and the one-half argument. Discuss. Math. Graph
Theory, 15(2):205–216, 1995.

[25] B. L. Hartnell and D. F. Rall. Lower bounds for dominating Cartesian products. J. Combin. Math.
Combin. Comput., 31:219–226, 1999. Papers in honour of Stephen T. Hedetniemi.

[26] B. L. Hartnell and D. F. Rall. Improving some bounds for dominating Cartesian products. Discuss.
Math. Graph Theory, 23(2):261–272, 2003.

[27] T. W. Haynes and P. J. Slater. Paired-domination and the paired-domatic number. In Proceedings of
the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Com-
puting (Boca Raton, FL, 1995), volume 109, pages 65–72, 1995.

26



[28] T. W. Haynes and P. J. Slater. Paired-domination in graphs. Networks, 32(3):199–206, 1998.
[29] M. A. Henning and D. F. Rall. On the total domination number of Cartesian products of graphs.

Graphs Combin., 21(1):63–69, 2005.
[30] P. T. Ho. A note on the total domination number. Util. Math., 77:97–100, 2008.
[31] X. Hou and Y. Lu. On the {k}-domination number of Cartesian products of graphs. Discrete Math.,

309:3413–3419, 2009.
[32] M. S. Jacobson and L. F. Kinch. On the domination of the products of graphs. II. Trees. J. Graph

Theory, 10(1):97–106, 1986.
[33] N. Li and X. Hou. On the total {k}-domination number of Cartesian products of graphs. Comb.

Optim., in press.
[34] A. Meir and J. W. Moon. Relations between packing and covering numbers of a tree. Pacific J. Math.,

61(1):225–233, 1975.
[35] C. M. Mynhardt. Vertices contained in every minimum dominating set of a tree. J. Graph Theory,

31(3):163–177, 1999.
[36] R. J. Nowakowski and D. F. Rall. Associative graph products and their independence, domination

and coloring numbers. Discuss. Math. Graph Theory, 16(1):53–79, 1996.
[37] D. P. Sumner and E. Wojcicka. Graphs critical with respect to the domination number. In Domination

in Graphs, volume 209 of Monogr. Textbooks Pure Appl. Math., pages 439–469. Dekker, New York,
1998.

[38] L. Sun. A result on Vizing’s conjecture. Discrete Math., 275(1-3):363–366, 2004.
[39] V. G. Vizing. Some unsolved problems in graph theory. Uspehi Mat. Nauk, 23(6 (144)):117–134, 1968.

Appendix: Proof of Theorem 5.4

Define A = {g1, . . . , gα(G)}, {h1, . . . , hγ(H)}, D, xi, di,j , and I, where |I| = r ≥ 0, as in
the proof of Theorem 5.2. In addition, let I ′ be the set of indices i, 1 ≤ i ≤ α(G), such
that xi = 1. Set |I ′| = s. With this new notation we have:

(7)

α(G)
∑

i=1

xi ≥ 2
(

α(G) − r − s
)

+ s .

The number of vertices in A× V (H) that are not dominated from within H-fibers is at
least

∑

i/∈(I∪I′)

γ(H)
∑

j=1

(1 − di,j) +
∑

i∈I

|H| +
∑

i∈I′

(

|H| − ∆(H) − 1
)

because within an H-fiber a vertex dominates at most ∆(H) + 1 vertices. Therefore,

γ(H)
∑

j=1

|D ∩Bj| ≥ 1

2

(

∑

i/∈(I∪I′)

γ(H)
∑

j=1

(1 − di,j) +
∑

i∈I

|H| +

∑

i∈I′

(|H| − ∆(H) − 1)

)

=
1

2

(

(

α(G) − r − s
)

γ(H) −
∑

i/∈(I∪I′)

γ(H)
∑

j=1

di,j +

r|H| + s
(

|H| − ∆(H) − 1
)

)

.(8)
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Note again that xi ≥
∑γ(H)

j=1 di,j. Since in addition di,j = 0 for all i ∈ I, and di,j ≥ 0 for

all i ∈ I ′, we infer

γ(H)
∑

j=1

∑

i/∈(I∪I′)

di,j =

γ(H)
∑

j=1

α(G)
∑

i=1

di,j −
γ(H)
∑

j=1

∑

i∈I′

di,j ≤
α(G)
∑

i=1

xi .

Therefore, combining the above inequality with (8) and (7), we obtain

|D| =

γ(H)
∑

j=1

|D ∩Bj| +
α(G)
∑

i=1

xi

≥ 1

2

(

(

α(G) − r − s
)

γ(H) −
α(G)
∑

i=1

xi + r|H| +

s
(

|H| − ∆(H) − 1
)

)

+

α(G)
∑

i=1

xi

≥ 1

2

(

α(G) − r − s
)

γ(H) +
1

2

α(G)
∑

i=1

xi +
r

2
|H| +

s

2

(

|H| − ∆(H) − 1
)

≥ 1

2

(

α(G) − r − s
)

γ(H) +
(

α(G) − r − s
)

+
s

2
+
r

2
|H| +

s

2

(

|H| − ∆(H) − 1
)

=
1

2
α(G)

(

γ(H) + 2
)

+
r

2

(

|H| − γ(H) − 2
)

+

s

2

(

|H| − ∆(H) − γ(H) − 2
)

.
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