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In 1950 a class of generalized Petersen graphs was introduced by Coxeter
and around 1970 popularized by Frucht, Graver and Watkins. The family
of I-graphs mentioned in 1988 by Bouwer et al. represents a slight further
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that each I-graph I(n, j, k) admits a unit-distance representation in the Eu-
clidean plane. This implies that each generalized Petersen graph admits a
unit-distance representation in the Euclidean plane. In particular, we show
that every I-graph I(n, j, k) has an isomorphic I-graph that admits a unit-
distance representation in the Euclidean plane with a n-fold rotational sym-
metry, with the exception of the families I(n, j, j) and I(12m, m, 5m), m ≥ 1.
We also provide unit-distance representations for these graphs.
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1 Introduction

I-graphs were introduced in the Foster census [7] and form a natural generalization
of the generalized Petersen graphs introduced by Coxeter [6] and named by Watkins
[26]. This well-known family of graphs has been extensively studied [1, 10, 18, 20,
22, 25].

Let n ≥ 3 and j, k be such that 1 ≤ j, k < n and j, k 6= n/2. The I-
graph I(n, j, k) is a graph with vertex set

V (I(n, j, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

and edge set

E(I(n, j, k)) = {uiui+j, uivi, vivi+k; i = 0, . . . , n− 1},

where the subscripts are to be read modulo n. Clearly, the I-graph I(n, 1, k) is a
generalized Petersen graph; we denote it also by G(n, k).

In this paper we are interested in a special kind of drawings of graphs where all
edges have the same length. Such a drawing of a graph G is called a unit-distance
representation of G; see, for instance, [5, 8, 9, 11, 13, 19, 21, 23].

Erdös, Hararay and Tutte [9] proposed a natural geometrical definition of the
dimension of a graph G and have shown that the well-known Petersen graph of
Figure 1 (a) can be drawn in the Euclidean plane in such a way, that vertices are
mapped to distinct points in the plane and edges to line segments of length one.
They proposed a non-degenerate unit-distance representation of the Petersen graph
with rotational symmetry in the Euclidean plane that can be seen in Figure 1 (b).
Their representation respects a rotational symmetry of the Petersen graph, and their
drawing is obtained from the standard drawing of the Petersen graph by suitably
scaling the inner pentagram and rotating it against the outer pentagon, in such a
way that the edges connecting the pentagram with the pentagon become of length
one. We call this procedure a twist.
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Figure 1: The well-known Petersen graph G(5, 2) (a) can be represented with unit
distances with respect to a rotational symmetry (b).

This idea was used by S. W. Golomb [24] to draw the well-known Golomb graph,
a 4-chromatic unit-distance graph with ten vertices, which can be seen in Figure 2.
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The twist was used again by Buckley and Harary in [8], while considering wheel
graphs.

Figure 2: The Golomb graph can be realized with unit-distances using a twist on
the inner triangle.

Unit-distance drawings of the Petersen graph were studied in another context,
too. In [15] Horvat and Pisanski considered the vertex-degenerate unit-distance
representations of the Petersen graph in the Euclidean plane; namely, drawings
that respect unit edge lengths but may map two or more vertices into the same
point. The vertices of the Petersen graph G(5, 2) in Figure 1 (a) can be properly
vertex-colored with three colors in such a way, that vertices {1, 7, 9} are colored
with the first color, {4, 5, 6, 8} with the second one and vertices {2, 3, 10} with the
third one. This implies that the Petersen graph can be drawn in such a way that the
vertices of each color class are mapped to a vertex of an equilateral triangle with side
one. Since all generalized Petersen graphs are three colorable, this means that each
generalized Petersen graph addmits a vertex-degenerate unit-distance representation
in the Euclidean plane.

In this paper we study non-vertex-degenerate unit-distance representations in the
plane of the generalized Petersen graphs. If we apply a twist to obtain unit-distance
representations of a generalized Petersen graph, we do not get very far. Namely, only
13 of them, including the Petersen graph, can be drawn in this way. Figure 3 depicts
the other 12 generalized Petersen graphs, that have a unit-distance realization in the
Euclidean plane obtained by twist: G(6, 2), G(7, 2), G(7, 3), G(8, 2), G(8, 3), G(9, 2),
G(9, 3), G(9, 4), G(10, 2), G(10, 3), G(11, 2) and G(12, 2). The graph G(10, 4) on
Figure 4, left, is not one of the 13. However, it is isomorphic to the I-graph I(10, 2, 3)
that admits a unit-distance representation with rotational symmetry, see Figure 4,
right. It turns out that there are many such cases. For this reason we study the
unit-distance representations of generalized Petersen graphs in the broader context
of I-graphs.

In this paper we show that for most I-graphs we have either a unit-distance
representation obtained by using the twist or an isomorph that can be drawn in
such a way. The only other connected examples are I(12, 1, 5) and the prisms. We
provide a unit-distance representation for I(12, 1, 5) which does not use the twist
while unit-distance representations for prisms were found in [16]. In the case of
disconnected I-graphs that do not have rotational unit-distance representation we
draw each copy separately. Thus, the main result of the paper is the following
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Figure 3: Apart from the Petersen graph G(5, 2), only twelve generalized Petersen
graphs can be drawn as unit-distance graphs in the plane, using the twist.

theorem.

Theorem 1. Each I-graph has a non-vertex degenerate a unit-distance representa-
tion in the plane.

The most of the paper is devoted to the proof of Theorem 1. We need three impor-
tant tools for achieving this end:
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(a) (b)

Figure 4: The generalized Petersen graph G(10, 4) (a) and I-graph I(10, 2, 3) (b)
are isomorphic. The former cannot be realized with unit-distances using the twist,
while the second one can.

• unit-distance representations with rotational symmetry of I-graphs;

• existence of admissible isomorphs of an I-graph;

• finding unit-distance representations for sporadic cases.

2 Unit-distance representations with rotational

symmetry of I-graphs

Let G be a graph and let ρ : V (G)→ R2 be a representation of vertices of G in the
Euclidean plane such that every edge of G is represented as a line segment between
its end vertices. The representations of two edges may cross in the interior point. If
two or more vertices of G are mapped into a single point in R2, i.e. the representation
ρ is not injective on vertices, the representation is called vertex-degenerate. If there
is an edge e = uv and a vertex w 6= u, v of G such that ρ(w) belongs to the
line segment with endpoints ρ(u) and ρ(v), we call ρ vertex-edge-degenerate. A
representation is called a unit-distance representation, if uv ∈ E(G) implies that
the distance between ρ(u) and ρ(v) in R2 is one. In addition, we require that the
representation is non-vertex-degenerate.

We focus our attention to I-graphs admitting non-vertex-degenerate represen-
tations with rotational symmetry. In particular, for an I-graph I(n, j, k) we place
the vertices equidistantly on two concentric rims such that vertices ui are placed on
one rim and vertices vi on the other one, see Figure 5. Let R be the radius of the
first rim and let r be the radius of the second rim. Let φ be the offset angle of the
second rim with respect to the (fixed) first rim; namely, φ := ∠ ρ(u0)~0 ρ(v0), where
the point ~0 is the center of both rims and the second rim is rotated in the coun-
terclockwise direction according to the fixed first rim. The three parameters R, r
and φ determine the representation uniquely up to isometries of both rims. Edges
between the two rims are called spokes.

The inner angle ∠ ρ(u0)~0 ρ(ui) of the regular n-gon is clearly equal to 2iπ/n. We
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now define the representation with rotational symmetry ρ of the I-graph I(n, j, k)
by fixing the coordinates:

ρ(ui) = (R cos (2iπ/n) , R sin (2iπ/n)) , i = 0, 1, . . . , n− 1, (1)

ρ(vi) = (r cos (φ+ 2iπ/n) , r sin (φ+ 2iπ/n)) , i = 0, 1, . . . , n− 1, (2)

where, in order for such a representation to be unit-distance, we have to have:

R =
1

2 sin (jπ/n)
, r =

1

2 sin (kπ/n)
(3)

and

0 ≤ |R− r| ≤ 1. (4)

Since j 6= 0 and j 6= n/2, it holds 0 < sin (jπ/n) < 1; similar observation is true
for k. In particular min{r, R} > 1/2. The offset angle φ can be easily calculated
from the triangle ρ(u0)~0 ρ(v0) by the law of cosines

R2 + r2 − 2Rr cos(φ) = 1. (5)

u0

v0

r
R0

uj

αj

u-j

φ

vk

αk

Figure 5: The part of the representation with the rotational symmetry with notation
that will be widely used in this paper. We denote αj = 2jπ/n and αk = 2kπ/n.
Thick lines represent the unit-distance representations of graph edges.

Clearly, a unit-distance representation with rotational symmetry of the I-graph is
vertex-degenerate if and only if the left inequality in (4) holds:

0 = |R− r|. (6)

This fact can be expressed by the parameters of the I-graph.

Proposition 2. Let ρ be a unit-distance representation with rotational symmetry of
the I-graph I(n, j, k). The representation ρ is vertex-degenerate if and only if j = k.
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Proof. If j 6= k it follows that R 6= r, which, in turn, implies that the representation
with rotational symmetry ρ maps vertices of I(n, j, k) to distinct points of R2 and
ρ is not vertex-degenerate.

If j = k then R = r and all the vertices are mapped to points on the same circle.
For every point on a circle there exist at most two points on the same circle that
are at distance one. Since every vertex has three neighbors, (at least) two of them
must map to the same point and ρ is vertex-degenerate.

Let us summarize these findings into the following theorem.

Theorem 3. An graph I(n, j, k) admits a unit-distance representation with rota-
tional symmetry if and only if

0 ≤
∣∣∣∣ 1

2 sin (jπ/n)
− 1

2 sin (kπ/n)

∣∣∣∣ ≤ 1. (7)

Furthermore, this representation is vertex-degenerate if and only if j = k, or equiv-
alently

0 =

∣∣∣∣ 1

2 sin (jπ/n)
− 1

2 sin (kπ/n)

∣∣∣∣ . (8)

Note that (7) is obtained from (4) by applying (3) and similarly (8) is obtained
from (6).

We say that an I-graph I(n, j, k) is admissible if its parameters satisfy inequality
(7) and do not satisfy equality (8), otherwise it is called inadmissible. Similarly,
a triple (n, j, k) is admissible if the I-graph I(n, j, k) is admissible. Unfortunately,
there are infinitely many I-graphs that do not meet the conditions of Theorem 3,
the smallest example being I(10, 1, 4) alias generalized Petersen graph G(10, 4). In
the next section, the question which I-graphs have admissible isomorphs will be
studied.

The following result shows that we can get quite a large range of admissible
I-graphs.

Lemma 4. A graph I(n, j, k) admits a unit-distance representation with rotational
symmetry that is not vertex-degenerate if j, k ∈ [n

9
, 8n

9
].

Proof. If j ∈ [n
9
, 8n

9
], sin (jπ/n) ≥ sin (π/9) > 0 and since j 6= n

2
, we also have

sin (jπ/n) < sin (π/2) = 1. The same holds for k. Thus∣∣∣∣ 1

2 sin (jπ/n)
− 1

2 sin (kπ/n)

∣∣∣∣ ≤ 1

2 sin (π/9)
− 1

2 sin (π/2)
≤ 1

and the assertion follows by Theorem 3.

We call a graph I(n, j, k) or a triple (n, j, k) strongly admissible if j, k ∈ [n
9
, 8n

9
].

Similarly, we call a pair (n, j) strongly admissible if j ∈ [n
9
, 8n

9
]. The smallest ad-

missible I-graph that is not strongly admissible is the renowned Desargues graph
I(10, 1, 3). Thus, the condition of Lemma 4 is not a necessary condition for an
I-graph to be admissible.
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3 Existence of admissible isomorphs of I-graphs

A natural strategy for proving that an I-graph I(n, j, k) is a unit-distance graph
would be to either prove that I(n, j, k) is admissible or to prove that it has an
admissible isomorph. Therefore checking isomorphisms of I-graphs is important.
The following result, recently proven in [17], see also [4], determines the collection
of isomorphs of a given I-graph.

Theorem 5. Given two I-graphs I(n, j, k) and I(n, j1, k1), they are isomorphic if
and only if there exists an integer a, relatively prime to n, such that either {j1, k1} =
{aj mod n, ak mod n} or {j1, k1} = {aj mod n,−ak mod n}.

The following result shows that a vast majority of I-graphs have strongly admis-
sible isomorphs. Only two sporadic families remain which have to be addressed by
methods that are not using the twist.

Theorem 6. Let n, j, k be positive integers such that 1 ≤ j < k < n/2 and the triple
(n, j, k) is not of the form (12m,m, 5m), where m ∈ N. Then there exists an integer
a ∈ Z∗n such that the triple (n, aj, ak) is admissible.

Before we prove Theorem 6 we first need some technical lemmas. Lemma 10
shows that in most cases we can find strongly admissible equivalents. In its proof
we use the fact from Lemma 9, namely many pairs have sufficiently many strongly
admissible equivalents. Its proof relies on the following number-theoretical Lemma.
By ϕ we denote the Euler totient function.

Lemma 7. Let n ≥ 3 be an integer and n 6∈ {10, 12}. Then

|Z∗n ∩ [1, dn/9e − 1]| < ϕ(n)/4. (9)

Proof. Let n = pk1
1 p

k2
2 . . . pkt

t be the prime factorization of n. Using the inclusion-
exclusion principle, we can calculate the number of positive integers less than n that
are coprime to n as

ϕ(n) = n− 1−
t∑

i=1

(
n

pi

− 1

)
+

∑
i,j:1≤i<j≤t

(
n

pipj

− 1

)
−

∑
i,j,`:1≤i<j<`≤t

(
n

pipjp`

− 1

)
+ · · ·+ (−1)t

(
n

p1p2 · · · pt

− 1

)
.

Denote by x the number of positive integers less than n/9 that are coprime to n.
Then

x =

⌈
n

9

⌉
− 1−

t∑
i=1

(⌈
n

9pi

⌉
− 1

)
+

∑
i,j:1≤i<j≤t

(⌈
n

9pipj

⌉
− 1

)
−

∑
i,j,`:1≤i<j<`≤t

(⌈
n

9pipjp`

⌉
− 1

)
+ · · ·+ (−1)t

(⌈
n

9p1p2 · · · pt

⌉
− 1

)
.
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To show that x does not differ too much from ϕ(n)/9, we simply subtract the above
expressions. Note that for any integer a, the number da/9e is greater than a/9 by
at most 8/9.∣∣∣∣ϕ(n)

9
− x
∣∣∣∣ =

∣∣∣∣n9 − 1

9
−
⌈
n

9

⌉
+ 1−

t∑
i=1

(
n

9pi

− 1

9
−
⌈
n

9pi

⌉
+ 1

)
+

∑
i,j:1≤i<j≤t

(
n

9pipj

− 1

9
−
⌈

n

9pipj

⌉
+ 1

)
−

∑
i,j,`:1≤i<j<`≤t

(
n

9pipjp`

− 1

9
−
⌈

n

9pipjp`

⌉
+ 1

)
+ · · ·+ (−1)t

(
n

9p1p2 · · · pt

− 1

9
−
⌈

n

9p1p2 · · · pt

⌉
+ 1

)∣∣∣∣
≤ 8

9
+

t∑
i=1

8

9
+

∑
i,j:1≤i<j≤t

8

9
+

∑
i,j,`:1≤i<j<`≤t

8

9
+ · · ·+ 8

9

=
8

9

(
1 +

(
t

1

)
+

(
t

2

)
+ · · ·+

(
t

t

))
=

8

9
2t.

We now show that x < ϕ(n)/4 if n 6∈ {10, 12}. If t = 1, then ϕ(n)/9 − x =
n/9 − dn/9e − n/(9p1) + dn/(9p1)e and there are three cases to consider. If n is
divisible by 9p1 then n is also divisible by 9 and x = ϕ(n)/9. If n is divisible by 9,
but it is not divisible by 9p1, then x = ϕ(n)/9 − 1. In the last case where n is not
divisible by 9, we also have x = ϕ(n)/9. In any case, x < ϕ(n)/4.

If t ≥ 2, then one can verify that ϕ(n) > 7 · 2t except when n is one of the
numbers from Table 1. For any n from this table it is easy verify that x < ϕ(n)/4
if n 6∈ {10, 12}. For other numbers with t ≥ 2 we consider two cases. If x ≤ ϕ(n)/9
then also x < ϕ(n)/4. Otherwise

x− ϕ(n)

9
≤ 8

9
2t <

8

9
· ϕ(n)

7

and

x <
ϕ(n)

9
+

8

63
ϕ(n) =

15

63
ϕ(n) <

ϕ(n)

4
.

This completes the proof.

Remark 8. Note that for n ∈ {10, 12} we have equality in (9). Namely, in this case
ϕ(n)/4 = 1 and there exists exactly one element from Z∗n that is smaller than n/9.

Lemma 9. Let n and k be positive integers such that 1 ≤ k < n/2. Let A =
{ak; a ∈ Z∗n} be a multiset. If n/ gcd(n, k) ∈ {10, 12}, then exactly ϕ(n)/4 of
the elements of A belong to the interval [1, dn/9e − 1]. Otherwise strictly less than
ϕ(n)/4 of the elements of A belong to the interval [1, dn/9e − 1].

Proof. Denote nk = gcd(n, k). Then n and k can be written as products n = n′nk

and k = k′nk where gcd(n′, k′) = 1. First we calculate the multiplicity of an arbitrary
element ak of A. For this purpose we check for which numbers b ∈ Zn we have
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n ϕ(n) x
2 · 3 2 0
22 · 3 4 1
23 · 3 8 1
24 · 3 16 2
2 · 32 6 1
22 · 32 12 1
23 · 32 24 3
2 · 33 18 2
2 · 5 4 1
22 · 5 8 1
23 · 5 16 2
2 · 52 20 2
2 · 7 6 1
22 · 7 12 2
23 · 7 24 3
2 · 11 10 1
22 · 11 20 2
2 · 13 12 1

t = 2 : 7 · 2t = 28,

n ϕ(n) x
22 · 13 24 3
2 · 17 16 2
2 · 19 18 2
2 · 23 22 3
3 · 5 8 1
32 · 5 24 3
3 · 7 12 2
3 · 11 20 2
3 · 13 24 3
5 · 7 24 3
2 · 3 · 5 8 1
22 · 3 · 5 16 1
23 · 3 · 5 32 4
2 · 32 · 5 24 2
22 · 32 · 5 48 6
2 · 3 · 52 40 4
2 · 3 · 7 12 1
22 · 3 · 7 24 2

t = 3: 7 · 2t = 56,

n ϕ(n) x
23 · 3 · 7 48 5
2 · 32 · 7 36 4
2 · 3 · 11 20 3
22 · 3 · 11 40 4
2 · 3 · 13 24 3
22 · 3 · 13 48 5
2 · 3 · 17 32 4
2 · 3 · 19 36 4
2 · 3 · 23 44 5
2 · 5 · 7 24 2
22 · 5 · 7 48 5
2 · 5 · 11 40 4
2 · 5 · 13 48 5
3 · 5 · 7 48 5
2 · 3 · 5 · 7 48 6
22 · 3 · 5 · 7 96 11
2 · 3 · 5 · 11 80 8
2 · 3 · 5 · 13 96 11

t = 4: 7 · 2t = 112.

Table 1: Positive integers with t distinct prime factors having ϕ(n) < 7 · 2t.

ak ≡ bk (mod n). This congruence is satisfied if and only if ak′ ≡ bk′ (mod n′)
which is true if and only if a ≡ b (mod n′) since n′ and k′ are coprime. Then we
can write b = a + tn′, where 0 ≤ t < nk. The number b is coprime to n if and
only if t is divisible by every prime that divides n and does not divide n′. There are
ϕ(n)/ϕ(n′) possible choices for t and thus also ϕ(n)/ϕ(n′) choices for b. It follows
that the multiplicity of ak in A is ϕ(n)/ϕ(n′). Moreover, the mapping f : ak 7→ ak′

maps distinct elements of A to distinct elements of Z∗n′ .
Take an element x ∈ Z∗n′ . By the above comments there exists an a ∈ Z∗n such

that x = ak′. Therefore f(nkx) = x. Thus every element x from Z∗n′ corresponds to
ϕ(n)/ϕ(n′) copies of nkx from A. Moreover, x < n′/9 if and only if nkx < n′nk/9 =
n/9. Since

ϕ(n′)

4
· ϕ(n)

ϕ(n′)
=
ϕ(n)

4
,

exactly ϕ(n)/4 of elements from A are smaller than n/9 if n′ ∈ {10, 12} and otherwise
strictly less than ϕ(n)/4 elements from Z∗n are smaller than n/9 by Lemma 7 and
Remark 8.

Lemma 10. Let n, j, k be positive integers such that 1 ≤ j, k < n/2. Denote
m = gcd(n, j, k), nj = gcd(n, j)/m, nk = gcd(n, k)/m and n′ = n/(mnjnk). If
n′nj 6∈ {10, 12} or n′nk 6∈ {10, 12} then there exists an a ∈ Z∗n such that aj ∈
[n/9, 8n/9] and ak ∈ [n/9, 8n/9].

Proof. Denote by A the multiset {ak; a ∈ Z∗n} and by B the multiset {aj; a ∈ Z∗n}.
If n′nk 6∈ {10, 12} then strictly less than ϕ(n)/4 of the elements of A belong to the

10

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
10

9,
 J

an
u

ar
y 

4,
 2

01
0



interval [1, dn/9e − 1] by Lemma 9. Since aj = −(−a)j ≡ n − (−a)j (mod n),
also less than ϕ(n)/4 elements of A belong to the interval [b8n/9c + 1, n − 1]. It
follows that more than ϕ(n)/2 of elements of A belong to the interval [n/9, 8n/9].
If n′nk ∈ {10, 12} then exactly ϕ(n)/2 of elements of A belong to the interval
[n/9, 8n/9]. Similarly, if n′nk 6∈ {10, 12}, then more than ϕ(n)/2 elements of B
belong to the interval [n/9, 8n/9] and if n′nk ∈ {10, 12}, exactly ϕ(n)/2 elements
of B belong to the interval [n/9, 8n/9]. Thus, if not both n′nj and n′nk belong to
{10, 12}, it is not possible to have ϕ(n) pairs (aj, ak) such that at least one of aj or
ak does not belong to the interval [n/9, 8n/9]. Therefore there must exist an a ∈ Z∗n
such that both aj and ak belong to the interval [n/9, 8n/9].

Proof. (of Theorem 6) Denotem = gcd(n, j, k), nj = gcd(n, j)/m, nk = gcd(n, k)/m,
n′ = n/(mnjnk), j′ = j/(mnj) and k′ = k/(mnk). Note that gcd(nj, nk) = 1 and
gcd(n′, j′) = gcd(n′, k′) = gcd(j′, nk) = gcd(k′, nj) = 1.

If n′nj 6∈ {10, 12} or n′nk 6∈ {10, 12} then there exists an a ∈ Z∗n such that
aj ∈ [n/9, 8n/9] and ak ∈ [n/9, 8n/9] by Lemma 10. Following Lemma 4, the triple
(n, aj, ak) is admissible.

Otherwise there are three cases to consider. If n′nj = n′nk = 10, then n′ = 10
and nj = nk = 1 since nj and nk are coprime. Since also j′ and k′ are coprime to
n′, the only possible triples are of the form (10m,m, 3m), which are admissible by
Theorem 3.

We use the same reasoning in the case n′nj = n′nk = 12 to obtain possible triples
of the form (12m,m,m) or (12m,m, 5m), which we do not consider in this theorem.

The last case to consider is n′nj, n
′nk ∈ {10, 12} and n′nj 6= n′nk. Then n′ = 2,

nj = 5 and nk = 6 or n′ = 2, nj = 6 and nk = 5. Since j′ and k′ are both coprime
to n′, gcd(j′, nk) = gcd(k′, nj) = 1 and 1 ≤ j < k < n/2, we obtain possible triples
of the form (60m, 5m, 6m), (60m, 5m, 18m), (60m, 6m, 25m) and (60m, 18m, 25m).
For any m ≥ 1, the triple (60m, 5m, 6m) is admissible by Theorem 3. Taking a = 11,
a = 41 and a = 7, respectively, the triples (60m, a ·5m, a ·18m), (60m, a ·6m, a ·25m)
and (60m, a · 18m, a · 25m) are also admissible.

4 Sporadic cases and proof of the Main Theorem

Let us observe special non-vertex-degenerate unit-distance representations of the two
families of I-graphs that are not covered by Theorem 6. To deal with non-connected
cases we use the following result from [4].

Proposition 11. Let n, j, k be positive integers such that 1 ≤ j, k < n and j, k 6=
n/2. The graph I(n, j, k) is connected if and only if gcd(n, j, k) = 1. If gcd(n, j, k) =
d > 1, then the graph I(n, j, k) consists of d copies of I(n/d, j/d, k/d).

Proposition 12. Let n ≥ 3 and j be positive integers such that 1 ≤ j < n and j 6=
n/2. The I-graph I(n, j, j) has a non-vertex-degenerate unit-distance representation
in the plane.

Proof. Let d = gcd(n, j). Observe, that an I-graph I(n, j, j) is a graph union of d
(n/d)-prisms. Each (n/d)-prism can be constructed as the Cartesian product of the
cycle Cn/d on n/d vertices and the complete graph on two vertices K2. Following
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[16, Theorem 3.4], the graph I(n, j, j) has a non-vertex-degenerate unit-distance re-
alization in R2.

Proposition 13. The I-graph I(12, 1, 5) has a unit-distance representation in the
plane that is not vertex-degenerate.

Proof. We construct a unit-distance representation ρ of I(12, 1, 5) by placing its
vertices on four concentric cycles as follows:

ρ(ui) = (R cos (iπ/6) , R sin (iπ/6)) , i = 0, 2, 4, 6, 8, 10,

ρ(ui) = (r cos (iπ/6) , r sin (iπ/6)) , i = 1, 3, 5, 7, 9, 11,

ρ(vi) = (L cos (iπ/6) , L sin (iπ/6)) , i = 0, 2, 4, 6, 8, 10,

ρ(vi) = (` cos (iπ/6) , ` sin (iπ/6)) , i = 1, 3, 5, 7, 9, 11.

In order for ρ to be unit-distance representation, we have the following relationships
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Figure 6: The I-graph I(12, 1, 5) (a), drawn with unit distances in the Euclidean
plane (b).

between the radii: L = R−1, ` = r−1, 1 = R2+r2−r R
√

3 and 1 = L2+`2+2` L
√

3;
the latter two are obtained by using the law of cosines in the triangles with vertices
ρ(u0)~0 ρ(u1) and ρ(v0)~0 ρ(v5), respectively. This system of equations has essentially
a unique solution R =

(
6 + 7

√
3 +
√

15
)
/12 ≈ 1.833, r =

(
6 + 7

√
3−
√

15
)
/12 ≈

1.188, L = R − 1 and ` = r − 1, which gives a unit-distance representation of
I(12, 1, 5), seen on Figure 6, right.

Remark 14. It is necessary to find a representation of the I-graph I(12, 1, 5) without
using the twist since I(12, 1, 5) has no admissible isomorph. Namely, the set Z∗12

only has four members, 1, 5, 7 and 11. Therefore the only isomorphs I(n, j, k) of
I(12, 1, 5) have j ∈ {1, 11} and k ∈ {5, 7} or vice versa by Theorem 5. The radius

of the circle determined by the parameters 1 and 11 equals R =
√

2
−1+

√
3

while the

parameters 5 and 7 determine the radius of r =
√

2
1+
√

3
. Therefore for any choice of

parameters of isomorphic I-graphs we have |R − r| =
√

2. Hence, these graphs are
all inadmissible by Theorem 3.
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Proof. (of Theorem 1)
The I-graphs I(n, j, j) have a unit-distance representation in the plane that is not
vertex-degenerate by Proposition 12. The I-graphs I(12m,m, 5m) or I(12m, 5m,m),
where m ∈ N, have a unit-distance representation in the plane by Proposition 11
and Proposition 13. For other I-graphs the assertion follows by Theorem 5 and
Theorem 6.

5 Conclusion

Theorem 1 shows each I-graph has a unit-distance representation that is not vertex-
degenerate. Since each generalized Petersen graph is an I-graph, we obtain the
following important consequence.

Corollary 15. Each generalized Petersen graph admits a non-vertex-degenerate
unit-distance representation in the plane.

Figure 7: Rotational unit-distance representations of I-graphs I(9, 2, 4), I(12, 2, 5),
I(30, 5, 9), I(30, 9, 14) are vertex-edge-degenerate.

Although this is a positive result, a word of caution is in place. Figure 7 depicts
non-vertex-degenerate unit-distance representations of four I-graphs. However, they
are all vertex-edge-degenerate. The theory that we have developed does not prevent
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such degeneracies from happening. Observe that vertex-edge-degenerate situations
can occur only in two cases: firstly, when a spoke contains a vertex of the inner rim
and secondly, when an edge of the outer rim contains a vertex of the inner rim. The
following two propositions from [14] provide necessary and sufficient conditions for
checking whether a rotational unit-distance representation of an I-graph is vertex-
edge-degenerate.

Proposition 16. Let ρ be a unit-distance representation with rotational symmetry
of an I-graph I(n, j, k) with r, R and φ as in (3) and (5). Suppose j < k < n/2.
Then a vertex of the inner rim lies on a spoke that connects the inner and the outer
rim if and only if

n

π
arcsin

(
1 + r2 −R2

2r

)
∈ N,

and ρ is vertex-edge-degenerate.

Proposition 17. Let ρ be a unit-distance representation with rotational symmetry
of an I-graph I(n, j, k) with r, R and φ as in (3) and (5). Suppose j < k < n/2.
If
√

4R2 − 1/(2r) > 1 then a vertex of the inner rim does not lie on an edge of the
outer rim. Otherwise let β = arccos

(√
4R2 − 1/(2r)

)
and a vertex of the inner rim

lies on an edge of the outer rim if and only if there exists an a ∈ N such that

φ =
π

n
(j + 2 a)± β,

and ρ is vertex-edge-degenerate.

These propositions were used as a basis of a computer search for all admissible
I-graphs with a vertex-edge-degenerate unit-distance representation with rotational
symmetry up to 500 vertices. Only four distinct connected cases were discovered,
see Figure 7. However, all of them have admissible isomorphs whose unit-distance
representations are not vertex-edge degenerate. For example, I(9, 2, 4) is isomorphic
to I(9, 1, 4) which is admissible by Theorem 3 and non-vertex-edge-degenerate by
Proposition 16 and Proposition 17. Similarly, I(12, 2, 5) is isomorphic to I(12, 1, 2),
I(30, 5, 9) is isomorphic to I(30, 3, 5) and I(30, 9, 14) is isomorphic to I(30, 3, 8).

Conjecture 1. Let ρ be a unit-distance representation with rotational symmetry of
an I-graph I(n, j, k) where j 6= k and gcd(n, j, k) = 1. If n > 30, then ρ is not
vertex-edge-degenerate.

If the edges in Figure 7 are extended into lines, objects resemble astral configu-
rations of Berman [2] and Grünbaum [12] or polycyclic configurations of Boben
and Pisanski [3]. Exploring these intriguing relationships between unit-distance
representations of graphs and geometric configurations may be a challenging research
project.
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