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Abstract

In this paper we study the following problem: Given sets R and B of r red and b

blue points respectively in the plane, find a minimum-cardinality set H of axis-aligned
open rectangles (boxes) so that every point in B is covered by at least one rectangle
of H, and no rectangle of H contains a point of R. We prove the NP-hardness of the
stated problem, and give either exact or approximate algorithms depending on the type
of rectangles considered. If the covering boxes are vertical or horizontal strips we give
an efficient algorithm that runs in O(r log r + b log b +

√
rb) time. For covering with

oriented half-strips an optimal O((r + b) log(min{r, b}))-time algorithm is shown. We
prove that the problem remains NP-hard if the covering boxes are half-strips oriented
in any of the four orientations, and show that there exists an O(1)-approximation
algorithm. We also give an NP-hardness proof if the covering boxes are squares. In
this situation, we show that there exists an O(1)-approximation algorithm.

1 Introduction

Let R and B be sets of red and blue points respectively in the plane. Let S = R∪B, |R| = r,
|B| = b, and n = r + b. We say that R and B are the red and blue classes, respectively,
and that S is a bicolored point set. The x- and y-coordinates of the point p are denoted by
xp and yp, respectively. Given X, Y ⊂ R

2, we say that X is Y -empty if X does not contain
elements from Y .

A classical problem in Data Mining and classification problems is the Class Cover problem [9,
13, 21] which is as follows: given a bicolored set of points S = R ∪ B find a minimum-
cardinality set of R-empty balls which covers the blue class (i.e., every point in B is contained
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in at least one of the balls) and with the constraint that balls are centered at blue points.
Cannon and Cowen [9] showed that the Class Cover problem using balls is NP-hard in
general, and presented an (1+ lnn)-approximation algorithm for general metric spaces. For
points in R

d with the Euclidean norm, they gave a polynomial-time approximation scheme
(PTAS).

One of the basic objectives in Data Mining is to identify (classify) members between two
different classes of data [16]. By solving the Class Cover problem, a simple classifier can be
stated; see [21].

In this paper we study a non-constrained version of the Class Cover problem in the plane,
named the Boxes Class Cover problem, in which axis-aligned open rectangles (or boxes) are
considered as the covering objects (see Figure 1 a)). Our problem can be formulated as
follows:

The Boxes Class Cover problem (BCC-problem): Given the set S = R ∪ B, find
a minimum-cardinality set H of R-empty axis-aligned open rectangles (or boxes) such that
every point in B is covered by at least one rectangle of H.

a) c)b)

Figure 1: a) Covering the blue class with boxes. b) A solution to the BCC-problem induces a
rectilinear polygon separating B from R. c) Covering the blue class with disks.

The problem of covering with disks (instead of boxes), not necessarily centered at blue points,
is similar to the BCC-problem (see Figure 1 c)). This version of the class cover problem is
NP-hard [6], and as we will see in Section 2.3, it admits a constant-factor approximation
algorithm using the techniques of [7, 23].

General position (i.e. no two points are in the same vertical or horizontal line) is not assumed
in this paper. It is not hard to see that if a point set is perturbed a bit to be in general
position, then we might obtain a different solution to the BCC-problem. Thus, we assume
by default that points from S may have equal coordinates. Consequently, we will use the
lexicographic order, that is, each time we sort points by x-coordinate, ties are broken by
using the y-coordinate. All rectangles and squares considered in this paper are axis-parallel
and open, unless explicitly stated otherwise.

Another motivation for the BCC-problem is the so-called Red-Blue Geometric Separation
problem [24], where the goal is to compute a simple polygon with fewest vertices as possible
separating the red points from the blue points. This problem is motivated by applications
in scientific computation, visualization and computer graphics [1]. A solution to the BCC-
problem provides a geometric separation between the two classes with a rectilinear polygon
(see Figure 1 b)). Indeed, the use of rectangles is usual in the description of a point set [2, 19].
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Our contributions. (1) We prove the NP-hardness of the BCC-problem by a reduction from
the Rectilinear Polygon Covering problem [12, 22]. We present an algorithm that runs in
b · rO(min{r,b}) time and thus has good performance if r or b is small. We review the theory of
ε-nets, which has strong applications to the class cover problem [7, 10, 17, 25], and show that
our problem admits an O(log c)-approximation, where c is the size of an optimal covering.

(2) Due to the NP-hardness, we study some variants of our problem in which specific types of
boxes are used as covering objects. Firstly, if the covering rectangles are axis-parallel strips
we prove that the problem is polynomially solvable and give an exact algorithm running in
O(r log r + b log b +

√
rb) time. If the boxes are half-strips oriented in the same direction,

we present an algorithm that solves the problem in O((r+ b) log(min{r, b})) time. However,
if the covering boxes are half-strips in any of the four possible orientations, we prove that
the problem remains NP-hard by a reduction from the 3-SAT-problem [15]. Moreover, using
results from Clarkson and Varadarajan [10] we show that in this case there exists an O(1)-
approximation algorithm.

(3) We prove that the version in which the covering boxes are axis-aligned squares is NP-hard
by a reduction from the problem of covering a rectilinear polygon with holes, represented as
a zero-one matrix, with the minimum number of squares [5], and show the existence of an
O(1)-approximation algorithm.

Outline of the paper. In Section 2.1 we state a first approach to our problem. In Section 2.2 we
prove that the BCC-problem is NP-hard. In Section 2.3 we review related results concerning
range spaces and ε-nets, most of which are relevant to give approximation algorithms to our
problem. In Section 3 we study the BCC-problem when we restrict the boxes to strips or
half-strips. In Section 4 we consider the version of the BCC-problem in which the boxes
are axis-aligned squares, and we prove its NP-hardness. Finally, in Section 5, we state the
conclusions and further research.

2 The BCC-problem

In this section we first show a simple exponential algorithm for the BCC-problem. Second,
we prove the hardness of the problem, and finally, we provide approximation results.

2.1 A simple approach

Observe that any solution H = {H1, H2, . . . , Hk} of the BCC-problem is a cover of B, and
we can enlarge every Hi ∈ H so that the sides of Hi pass through red points or reach infinity.
From this observation, we can consider the set of maximal boxes (they can not be enlarged)
H∗ of all the R-empty open boxes whose sides pass through red points or are at infinity.
Thus, any solution of the BCC-problem will be a subset of H∗. Such types of boxes are
depicted in Figure 2, up to symmetry.

How many maximal boxes can there be for r red points and b blue points? A simple bound
is O(r4) since every side of a maximal box contains a red point or is at infinity. Next we
show that |H∗| = O(r2) and this bound is tight in the worst case.
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a) b) c) d) e)

Figure 2: Boxes in H∗: a) rectangle, b) half-strip, c) strip, d) quadrant, e) half-plane.

Let p and q be two red points of S so that q is below the horizontal line through p. Let Hpq

denote the box with opposite vertices p and q. If Hpq is R-empty, then it can be extended
horizontally until its left and right sides bump into red points or reach infinity, and then
Hpq becomes a member of H∗ (see Figure 3 a)). Additionally, we consider Hpq a vertical
half-line with top-most point p. Then, there are at most O(r) boxes in H∗ whose top side
contains the red point p, and thus at most O(r2) boxes whose top side contains a red point.
Analogously, there are O(r2) boxes in H∗ whose left side (resp. right side, bottom side)
contains a red point. Since every box in H∗ has at least one red point on its boundary, we
can conclude that |H∗| is O(r2).

On the other hand, there are point configurations for which |H∗| is Ω(r2). For example, let
r be an even number and consider the sets S1 and S2 of red points with r/2 points each,
separated by a horizontal line as illustrated in Figure 3 b). Assume that the blue points are
anywhere. There are r

2
− 1 different boxes in H∗ for every two consecutive red points in S1,

and thus ( r
2
− 1)2 = Ω(r2) in total.

a) b)

S1

S2

p

q

hp

Hpq

Figure 3: a) Finding boxes in H∗ whose top sides contain the red point p. b) An example with
Ω(r2) boxes in H∗.

Lemma 2.1 The number of boxes in an optimal solution to the BCC-problem is upper
bounded by min{2r + 2, b}. Furthermore, the bound is tight.

Proof. Let H be an optimal solution of the BCC-problem. Since every blue point is covered
by a box from H then H ≤ b. The equality holds when the elements of S are on a line ` and
their colors alternate along `.

If points have distinct x-coordinates (resp. y-coordinates) the upper bound r + 1 for |H| is
easy. We prove now that |H| ≤ 2r + 2 for any set S = R ∪ B, possibly with degeneracies.

Let p, q ∈ R, let H−
p (resp. H+

p ) be the maximum-height box of H∗ whose top (resp. bottom)
side contains p, and let Spq be the vertical strip containing both p and q on its boundary.
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Associate with each red point p the following set of boxes:

Ap =

{

{Spq} if there exists q ∈ R such that xp < xq, yp = yq, and Spq ∈ H∗

{H−
p , H

+
p } otherwise.

Now, let W =
(

⋃

p∈RAp

)

∪{H1, H2}, where H1 is the half-plane in H∗ with right boundary,

and H2 the one with left boundary. Since |W| ≤ 2r+2, it suffices to show that W is a cover
of R2 \R (thus it covers B). Let u be any point from R

2 \R. There are two cases to cover u:

Case 1 : There is a red point p on the line x = xu. Assume that p is closest to u. If
Ap = {H−

p , H
+
p } then u is covered by a box of Ap. Otherwise, there is a sequence p1, p2, . . . , pk

of red points such that p1 = p, Spipi+1
∈ W (1 ≤ i < k), and u is covered by one of the two

elements of Apk .

Case 2 : There is no red point on the line x = xu. Let u′ (resp. u′′) be the orthogonal
projection of u on the left (resp. right) side of the vertical strip of H∗ covering u. If u′

is not a red point, then u′ is covered by Case 1 and u is covered by the same box as u′.
Analogously if u′′ is not a red point. Otherwise, if u′ and u′′ are red points, then Su′u′′ is in
W and covers u.

For the tightness of the bound, consider the configuration of points depicted in Figure 4.
Notice that there are 2r + 2 groups of blue points, each located on a vertical or horizontal
line passing through a red point, so that every two blue points belonging to different groups
can not be covered by the same R-empty open box. 2

Figure 4: A case in which exactly 2r + 2 R-empty open boxes are needed to cover B.

The above discussion lets us to design the following exponential algorithm to report an exact
solution for the BCC-problem:

1. Compute the set H∗ in O(r2) time,

2. Find the smallest k ∈ {1, . . . ,min{2r + 2, b}} such that there exists a subset of H∗ of
size k covering B.

There are (O(r2))min{2r+2,b} = rO(min{r,b}) subsets of H∗ to be checked, and the checking of
a subset can be done in O(b · min{2r + 2, b}) = O(min{rb, b2}) time. The overall time
complexity is rO(min{r,b}) ·min{rb, b2} = b · rO(min{r,b}).

In general, the time complexity of this algorithm is exponential. However, if r or b is O(1),
then the time complexity is polynomial.
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2.2 Hardness

In this subsection we prove that the BCC-problem is NP-hard. The proof is based on a
reduction from the Rectilinear Polygon Covering problem (RPC-problem) which is as follows:
Given a rectilinear polygon P , find a minimum cardinality set of axis-aligned rectangles whose
union is exactly P (see Figure 5). For a general class of rectilinear polygons with holes,
Masek proved that the RPC-problem is NP-hard [22]. Culberson and Reckhow used a clever
reduction from the 3-SAT-problem [15] to show that the RPC-problem is also NP-hard for
polygons without holes [12].

H1

H2

H3

H4

a) b)

P P

Figure 5: a) A rectilinear polygon P . b) An optimal covering of P with four rectangles.

Theorem 2.2 The BCC-problem is NP-hard.

Proof. Let P be an instance for the RPC-problem. Let A1 be the set of all distinct axis-
parallel lines containing an edge of P . For every two consecutive vertical (resp. horizontal)
lines in A1, draw the vertical (resp. horizontal) mid line between them. Let A2 be the set of
these additional lines. Let G be the grid defined by A1 ∪A2. Put a red (resp. blue) point in
every vertex of G \ P (resp. G ∩ P ) (see Figure 6).

Figure 6: The reduction from the RPC-problem to the BCC-problem.

Let S be the above set of red and blue points. Clearly, any optimal covering of P can be
scaled up slightly to obtain an optimal covering for the BCC-problem on S with the same
cardinality (because it covers the edges and the interior of P ). Conversely, any optimal
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covering H for the BCC-problem on S can be adjusted to be an optimal covering for P
with the same cardinality: Let H = {H1, H2, . . . , Hk} be an optimal covering for the BCC-
problem on S. We assume that each Hi ∈ H is maximal, i.e., it can not be enlarged in order
to contain more blue points. Let H ′

i, 1 ≤ i ≤ k, be the smallest bounding box of Hi∩B with
H ′

i ⊆ P . If some H ′
i is not contained in P , then it must contain at least one cell of G \ P

with at least one red vertex, say u, and then Hi covers u, a contradiction.

To verify that H′ =
⋃k

i=1 H
′
i covers P we proceed as follows: Let c be a cell of G ∩ P . It

holds that: (i) c has exactly two adjacent edges on lines of A1 and two adjacent edges on
lines of A2, and (ii) any maximal box Hi ∈ H covering a blue vertex v of c whose two edges
lie on lines of A1, covers c. Hence, H′ is an optimal covering of P . 2

Remark. Let GS = (V,E) be the graph in which V is equal to B, and there is an edge
in E between two blue points p and q if and only if the minimum closed box containing
both p and q is R-empty. The blue points covered by an R-empty open box are pairwise
adjacent and form a clique in GS. Conversely, the smallest closed bounding box of the points
of a clique in GS is R-empty, and thus there exists an R-empty open box covering them.
Therefore, the BCC-problem is equivalent to finding a Minimum Clique Partition in GS [15].
The Partition Into Cliques Problem is strongly NP-complete [15], and the NP-hardness of
the BCC-problem implies that it remains NP-complete if the input graph is a graph GS,
where S is a bicolored point set.

2.3 Approximation algorithms

A finite1 range space (X,R) is a pair consisting of an underlying finite set X of objects and
a finite collection R of subsets of X called ranges. Given the (primal) range space (X,R),
its dual range space is (R, X∗) where X∗ = {Rx | x ∈ X} and Rx is the set of all ranges in
R that contains x [7].

Given a range space (X,R), the set cover problem asks for the minimum-cardinality subset
of R that covers X [15]. The dual of the set cover problem is the hitting set problem:
to find a minimum subset P ⊆ X such that P intersects with each range in R [15]. A
set cover in the primal range space is a hitting set in its dual, and vice versa. The set
cover problem is NP-hard and the best known approximation-factor of a polynomial-time
algorithm is (1 + ln |X|) [14, 15]. The algorithm follows the greedy approach: while there
are elements in X not covered, add to the solution the set of R that covers the maximum
number of non-covered elements in X .

The BCC-problem is an instance of the set cover problem in the range space (B,H∗). The
greedy approach above gives the same logarithmic-factor of approximation for the BCC-
problem, even if we modify its definition by restricting the covering boxes to axis-aligned
squares (Figure 7). As a consequence, we get the following result:

Statement 2.3 The BCC-problem has an O(log b)-approximation algorithm if we cover with
either boxes or axis-aligned squares.

1A range space can be infinite, but for the purpose of our problem it will be finite.
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H ′

H ′′

H1 H2 H3 Hk−1 Hk

· · ·

· · ·

· · ·

2k−2

2k−2 2k−1

2k−1

a)

. . .

H ′

H ′′

H1 H2 Hk

b)

Figure 7: The greedy method gives a logarithmic factor of approximation for both boxes and
squares. In a) (resp. b)), each of the intersections of the boxes (resp. squares) H ′ and H ′′ with
the box (resp. square) Hi (1 ≤ i ≤ k) contains 2i−1 blue points. The greedy method reports
{H1,H2, . . . ,Hk} instead of {H ′,H ′′}.

Brönnimann and Goodrich [7] gave a general approach in order to find an approximate
hitting set for range spaces, in such a way that when the problem is solved in the dual range
space, it gives a set cover in the primal one. Their method is based on finding, as candidate
hitting sets, small-size subsets called ε-nets, and it works for range spaces with finite VC-
dimension [7, 17, 25]. In terms of our problem, an ε-net, 0 ≤ ε ≤ 1, is a subset B′ ⊆ B such
that any box in H∗ containing ε|B| points, covers an element of B′. In the dual range space,
an ε-net is a subset H ⊆ H∗ covering all points p of B such that p is covered by at least
ε|H∗| boxes of H∗. The VC-dimension of (X,R) is stated as the maximum cardinality of a
subset Y ⊆ X such that any subset of Y is the intersection of Y with some range in R. If
the VC-dimension of the primal space is d, then the VC-dimension of the dual range space
is at most 2d+1 [7, 25]. Note that the VC-dimension of our range space (B,H∗) is at most
four (i.e. in any subset P ⊆ B with at least five points, there is subset P ′ ⊂ P that can not
be separated with a box in H∗ from P \ P ′).

For range spaces with constant VC-dimension, the Brönnimann and Goodrich’s method
reports a hitting set of size at most a factor of O(log c) from the optimal size c. This result
is based on the fact that, for every range space with finite VC-dimension d, there exists
an ε-net of size O(d

ε
log d

ε
) [17]. In general, if the range space has constant VC-dimension,

and there exists an ε-net of size O(1
ε
ϕ(1

ε
)), their method finds a hitting set of size O(ϕ(c)c),

where c is the size of an optimal set.

Therefore, since our range space (B,H∗) has constant VC-dimension (also the dual), the
Brönnimann and Goodrich’s technique can be applied to obtain in the dual range space
a hitting set of size at most a factor of O(log c) from the optimal size c, which induces
a solution H (a set cover) for the BCC-problem with the same size. Thus we obtain the
following result:

Statement 2.4 The BCC-problem has an O(log c)-approximation algorithm, where c is the
size of the optimal covering.

Remark. Aronov et al. [4] proved the existence of ε-nets of size O(1
ε
log log 1

ε
) for range

spaces of points and box ranges. They stated as further research to find, for the dual range
space, ε-nets of size less than O(1

ε
log 1

ε
). They also mentioned that in [8] the authors claimed,
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without proof, their existence. Such bound would give an O(log log c)-approximation algo-
rithm to the BCC-problem.

Matoušek et al. [23] proved the existence of ε-nets of size O(1
ε
) for point range spaces and

disk ranges. Due to this, techniques from Brönnimann and Goodrich [7] provide an O(1)-
approximation for the class cover problem with disks. Clarkson and Varadarajan [10] showed
that if the geometric range space2 (X,R) has the property that, given a random subset
R′ ⊂ R and a nondecreasing function f(·), there is a decomposition of the complement of
the union of the elements of R′ into an expected number of at most f(|R′|) regions, then
a cover of size O(f(|C|)) can be found in polynomial time, where C is the optimal cover.
This result is based on the fact that, with the above conditions, there are ε-nets of size
O(f(1

ε
)) for the dual range space [10, Theorem 2.2]. If R is a family of pseudo-disks3, then

the trapezoidization of the complement of any subset R′ ⊂ R has complexity O(|R′|) and
thus the dual range space has ε-nets of size O(1

ε
) [10]. Since a set of axis-aligned squares is

a family of pseudo-disks, by using the techniques in [7, 10], the following result is obtained:

Statement 2.5 The BCC-problem has an O(1)-approximation algorithm if the covering
boxes are restricted to axis-aligned squares.

3 Solving particular cases

In this section we study the BCC-problem for some special cases. Namely, we only consider
certain boxes of H∗ having at most three points on their boundary.

3.1 Covering with horizontal and vertical strips

In this subsection we solve the BCC-problem by using only horizontal and vertical strips and
also axis-aligned half-planes (which we also call strips for simplicity) as covering objects, see
Figure 2 c) and e). We assume that R,B and S are sorted by x- and y-coordinate, which
can be achieved in O(r log r+ b log b) time. Then, the strips of H∗ can be computed in linear
time.

There exists a solution for the BCC-problem if and only if every blue point can be covered
by an axis-parallel line avoiding red points. This can be tested in linear time. Suppose that
the BCC-problem has a solution. If a blue point and a red point lie on the same vertical
(resp. horizontal) line then the blue point can be covered by only one strip in H∗. We add
all such strips to the solution and remove the blue points they cover. This can be done in
linear time. Each of the remaining blue points is covered by two strips in H∗. We show how
to solve this problem optimally.

Consider the graph G = (V,E) whose set of vertices is the set of strips that cover at least one
blue point (Figure 8), and whose set of edges E is defined as follows: put an edge between

2A range space (X,R) is geometric if X is a set of geometric objects, generally points, and R is a set of
geometric ranges such as half-spaces, boxes, convex polygons, balls, etc.

3A family of Jordan regions (i.e. regions bounded by closed Jordan curves) is a family of pseudo-disks if
the boundaries of any pair of regions intersect at most twice.
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the strips H1 and H2 if and only if H1 ∩H2 contains a blue point. The graph G is bipartite,
has O(r) vertices and O(b) edges, and can be constructed in O(r + b) time.

a) b)

Figure 8: a) A set of red and blue points. b) Strips covering at least one blue point.

Since each blue point is covered by exactly two strips, the problem is reduced to finding a
Minimum Vertex Cover [15] in G. However, because of König’s theorem, the Vertex Cover
Problem for bipartite graphs is equivalent to the Maximum Matching Problem, and thus it
can be solved in O(

√

|V ||E|) = O(
√
rb) time [18]. Thus, the following result is obtained:

Theorem 3.1 The BCC-problem can be solved in O(r log r + b log b+
√
rb) time if we only

use axis-aligned strips as covering objects.

3.2 Covering with oriented half-strips

In this subsection we solve the BCC-problem by considering only half-strips oriented in a
given direction, say top-bottom half-strips. A box of H∗ is a half-strip if it contains at
most three points on its boundary (Figure 2 b), c), d), and e)), and is top-bottom if either
it contains a red point on its top side or it is a vertical strip. Next, we give an optimal
O((r + b) log(min{r, b}))-time algorithm.

Consider the structure of rays that is obtained by drawing a bottom-top red ray starting at
each red point as depicted in Figure 9. For a given blue point p, let sp be the maximum-
length horizontal segment passing through p whose interior does not intersect any red ray.
Let pl (resp. pr) be the red point such that the left (resp. right) endpoint of sp is located in
the ray corresponding to pl (resp. pr). We say that pl (resp. pr) is the left (resp. right) red
neighbor of p (Figure 9).

Sketch of the algorithm and correctness. Every time, we select the highest blue point p not
yet covered, and include in the solution the top-bottom half-strip Hp whose top side is sp
translated upwards until it touches a red point or reaches the infinite. In other words, Hp is
the top-bottom half-strip in H∗ covering p and the maximum number of other blue points.
The algorithm ends when all blue points are covered. The correctness of this algorithm
follows from the fact that, if p is a blue point not yet covered with maximum y-coordinate,
then Hp is so that, for any other non-covered blue point p′ which is not in Hp, p and p′ can
not be covered with the same top-bottom half-strip. This is so because every top-bottom
half-strip which covers both p and p′, contains at least one of the two red neighbors of p.
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sp

pl

pr

p

Hp

Figure 9: The ray structure.

Algorithm. We first preprocess S to obtain the decreasing y-coordinate order of the elements
of B, and build two balanced binary search trees TB and TR containing the blue and the red
points sorted by x-coordinate, respectively. The first tree allows the deletion of elements.
In the second tree, each node v is labeled with the element of minimum y-coordinate in
the subtree rooted at v. This labeling permits us to obtain the red neighbors for a given
blue point p and to determine the top side of Hp, both in O(log r) time. This preprocess
takes O(r log r + b log b) time in total. If there are a blue point p and a red point q such
that xp = xq and yp > yq, then there is no solution to our problem. It can be checked in
O(r + b) time by simultaneous in-order traversals on TR and TB. Now, we do the following
for each blue point p in the decreasing y-coordinate order which is not still covered (i.e., p
is in TB): find the left and the right red neighbors pl and pr of p, determine Hp and include
it in the solution, in O(log b + kp) time find the kp blue points in TB covered by Hp (i.e.,
those points p′ in TB such that xpl < xp′ < xpr) and remove them from TB in O(kp log b)
time. The total time complexity is O(r log r + b log b) +

∑

p∈B O(log b + log r + kp log b) =
O(r log r + b log b+ b log r) = O(r log r + b log b).

We show now how to reduce the asymptotic time complexity of the algorithm above. Suppose
that r < b. We prune the set of blue points as follows. Sort the red points by x-coordinate to
obtain the ordered sequence XR. For every vertical strip between two consecutive red points
and for every vertical line containing a red point, we store only the highest blue point. It
suffices to cover only these blue points by the above algorithm. They can be computed in
O(b log r) time using binary search in XR. The overall time complexity is O((r + b) log r).
We can proceed analogously if b ≥ r in order to reduce the time complexity to O((r+b) log b)
(by pruning red points in the strips defined by blue points).

In general, we can choose which variant to apply depending on the minority color, and finally
obtain an algorithm running in O(min{(r+ b) log r, (r+ b) log b}) = O((r+ b) log(min{r, b}))
time. Thus, the following result is obtained:

Theorem 3.2 The BCC-problem can be solved in O((r + b) log(min{r, b})) time if we only
use half-strips in one direction as covering objects.

Next we show that for min{r, b} = Ω(r + b) the above algorithm is optimal in the algebraic
computation tree model. Given a set X = {x1, . . . , xn} of n numbers, denote as xπ1

≤
· · · ≤ xπn

the sorted sequence of these numbers. The maximum gap of X is defined as
MAX-GAP(X) = max1≤i<n{xπi+1

− xπi
} [20]. Arkin et al. [3] proved that, given a set

X = {x1, . . . , xn} of n real numbers and a positive real number ε, the problem of deciding
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whether
MAX-GAP{x1, . . . , xn, 0, ε, 2ε, . . . , nε} < ε

has an Ω(n log n) lower bound in the algebraic computation tree model. (Note that this
problem can be solved in linear time with the floor function, which is not an algebraic
operation.) By a reduction from this new version of MAX-GAP, we show that our algorithm
is optimal.

Theorem 3.3 The BCC-problem has an Ω(n log n) lower bound in the algebraic computation
tree model if we only use half-strips (or strips) in one direction.

Proof. Let X = {x1, . . . , xn} and ε > 0 be an instance of the above MAX-GAP prob-
lem. Assume that 0 ≤ xi ≤ nε, for i = 1, . . . , n, because otherwise the max gap would
be greater than or equal to ε. We do the following construction: Put red points in the
coordinates (0, 0), (ε, 0), (2ε, 0), . . . , (nε, 0). Let R be the set of these n + 1 red points.
Put blue points in the coordinates (x1, 1), (x2, 1), . . . , (xn, 1), and let B be the set of these
n blue points. In order to have the max gap smaller than ε, each of the open intervals
(0, ε), (ε, 2ε), . . . , ((n − 1)ε, nε) has to be pierced by one of the xi’s. Now, solve the BCC-
problem for R and B with half-strips (or strips) in the top-bottom direction. It follows that
MAX-GAP{x1, . . . , xn, 0, ε, 2ε, . . . , nε} < ε if and only if the minimum number of covering
half-strips (or strips) is exactly n (Figure 10). 2

1

0

0 ε 2ε 3ε 4ε 5ε

x

y

1

0

0 ε 2ε 3ε 4ε 5ε

x

y

a) b)

Figure 10: Construction of the reduction from the MAX-GAP to our problem.

3.3 Covering with half-strips

In this subsection we study the BCC-problem when the covering boxes are half-strips oriented
in any of the four possible directions. We call this version the Half-Strip Class Cover problem
(HSCC-problem). First we show that this variant is also NP-hard, and after that we give a
constant-factor approximation algorithm due to results in [7, 10].

Notice that a solution to the HSCC-problem does not exist if and only if there are two
segments with red endpoints, one vertical and one horizontal, such that their intersection is
a blue point. This can be checked by using similar arguments as in Subsections 3.1 and 3.2.

Theorem 3.4 The HSCC-problem is NP-hard.
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Proof. To prove the NP-hardness we use a reduction from the 3-SAT-problem [15]. An
instance of the 3-SAT-problem is a logic formula F of t boolean variables x1, . . . , xt given
by m conjunctive clauses C1, . . . , Cm, where each clause contains exactly three literals (i.e.,
a variable or its negation). The 3-SAT-problem asks for a value assignment to the variables
which makes the formula satisfiable, and its NP-hardness is well known [15].

Given F , an instance of the HSCC-problem is constructed in the following way. Let α be a
set of t pairwise-disjoint vertical strips of equal width such that the i-th strip αi, from left to
right, represents the variable xi. Similarly, let β be a set of t+m pairwise-disjoint horizontal
strips of equal width. The clause Cj is represented by the (t+ j)-th strip βt+j from bottom
to top. Consecutive strips in α and β are well separated. Let δi be a mid line partitioning
the strip αi into two equal parts (Figure 11). We say that the part of the interior of αi that
is to the right (resp. to the left) of δi is the true (resp. false) part of αi.

For each variable xi (1 ≤ i ≤ t) we put in αi ∩ βi a set Vi of red and blue points as follows
(Figure 11). We add red points in the intersections of δi and the boundary of βi; a blue
point p in the center of αi ∩ βi (p is on δi); two red points q and q′ in the interior of βi such
that q is on the left boundary of αi and yq > yp, and q′ is on the right boundary of αi and
yq′ < yp. Moreover, we add two blue points p′ and p′′ in the interior of αi ∩ βi such that p′

is in the false part of αi and yp′ < yq′, and p′′ is in the true part of αi and yp′′ > yq.

βi

αi

δi

p

p′

p′′
q

q′

Figure 11: Set of bicolored points Vi for xi in the reduction from the 3-SAT-problem.

For each clause Cj (1 ≤ j ≤ m) we add a set Wj of bicolored points in the following way.
Suppose that Cj involves the variables xi, xk, and xl (1 ≤ i < k < l ≤ t). Let `1 and `′1
(resp. `2 and `′2) be two horizontal lines that are close to the top (resp. bottom) boundary
of βt+j such that `1 (resp. `2) is outside βt+j and `′1 (resp. `′2) is inside (Figure 12). Let `3
and `′3 be two vertical lines lying outside αk and such that `3 and `′3 are close to the left and
right boundaries of αk, respectively.

Put red points at the intersections of the lines `1 and `2 with δi, `3, δk, `
′
3, δl, and the

boundaries of αi, αk, and αl. Add three more red points, one on the top boundary of βt+j ,
to the left of `3 and close to `3; another between `3 and the left boundary of βk, above `′2
and close to `′2; and the last one on `′2 and between the right boundary of βk and `′3.

Now we add blue points. Put a blue point in the intersection of `′1 and `3, and another in
the intersection of `′3 and the bottom boundary of βt+j . If xi is not negated in Cj , then
put in the true part of αi (otherwise, in the false part) two blue points, the first one on `′1
and the second on the bottom boundary of βt+j . If xk is not negated in Cj , then put one
blue point in the center of the intersection of βt+j and the true part of αk (otherwise in the
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false part). Finally, if xl is not negated in Cj , then put in the true part of αl (otherwise in
the false part) two more blue points, one on the top boundary of βt+j and another on the
bottom boundary.

βt+j

αi

δi

αk

δk

αl

δl

xi xk xl

. . .

. . .

. . .

. . .

`1

`′
1

`′
2

`2

`3 `′
3

Figure 12: The set Wj of red and blue points for the clause Cj = (xi ∨ xk ∨ ¬xl).

Let S =
⋃t

i=1 Vi ∪
⋃m

j=1Wj be the instance of the HSCC-problem. We say that two blue
points in S are independent if they can not be covered with the same half-strip. Notice
that for each variable xi the blue points in Vi are independent from the others blue points
in S except with those that are in αi, and also that at least two half-strips are needed to
cover them. Moreover, blue points in the false part of αi are independent from blue points
in the true part. There are essentially two ways of covering the blue points in Vi with two
half-strips. The first one with a right-left half-strip covering the two lowest blue points in
Vi and a vertical strip covering the true part of αi (Figure 13 a)), and the second one with
a vertical strip covering the false part of αi and a left-right half-strip that covers the upper
two blue points of Vi (Figure 13 b)). We say that the first way is a true covering of Vi (i.e.,
xi is true), and that the second one is a false covering of Vi (i.e., xi is false).

a) b)

xi

βi

αi

δi

xi

βi

αi

δi

Figure 13: The two ways of optimally covering the blue points associated to a variable xi. a) xi
is equal to true, b) xi is equal to false.

For each clause Cj (1 ≤ j ≤ m) that involves the variables xi, xk, and xl (1 ≤ i < k < l ≤ m)
we observe that if at least one variable, say xi, is such that the covering of Vi covers the blue
points in Wj ∩ αi (i.e., the value of xi, corresponding to the covering of Vi, makes Cj true),
then exactly two half-strips are sufficient and needed to cover Wj \ αi. Otherwise, at least
three half-strips are needed.

Due to the above observations we claim that F is satisfiable if and only if the blue points in
S can be covered with 2t+ 2m half-strips. In fact, if F is satisfiable, then for each variable
xi we cover Vi with a true covering if xi is true, and otherwise with a false covering. Each
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clause Cj (with variables xi, xk, and xl) is true, then with two half-strips we can cover the
blue points in Wj not covered by the coverings of Vi, Vk, and Vl. We use 2t half-strips for
the variables and 2m for the clauses, thus 2t + 2m in total. Inversely, we can not use less
than 2t + 2m half-strips to cover blue points in S, thus if we use exactly 2t + 2m, then we
have to use two per each variable, and two for each clause, implying that F is satisfiable if
we assign the value true to each variable xi, if Vi has a true covering, and the value false
otherwise. Hence, the theorem follows. 2

Given the NP-hardness of the HSCC-problem, we are interested in approximation algorithms.
Let HS be the set of all half-strips in H∗. By using results from Clarkson and Varadara-
jan [10], we prove that the dual of the range space (B,Hs) has ε-nets of size O(1

ε
), implying

an O(1)-approximation algorithm to the HSCC-problem.

Theorem 3.5 There exists a polynomial-time O(1)-approximation algorithm for the HSCC-
problem.

Proof. Let HS be the set of all half-strips in H∗, and partition HS into the subsets HSv

and HSh
of all vertical and horizontal half-strips, respectively. Given ε > 0, the dual of the

range space (B,HSv
) has (by results from Clarkson and Varadarajan [10]) an ( ε

2
)-net Nv

of size O(2
ε
) because HSv

is a family of pseudo-disks. Analogously, the dual of the range
space (B,HSh

) has an ( ε
2
)-net Nh of size O(2

ε
). We claim that Nv ∪ Nh is an ε-net of size

O(4
ε
) = O(1

ε
) for the dual of (B,HS). In fact, if p is a blue point covered by ε|HS| half-

strips, then at least ε
2
|HS| of them are either vertical or horizontal. Thus, since Nv and

Nh are ( ε
2
)-nets, p is covered by a half-strip in Nv ∪ Nh. It follows from the results from

Brönnimann and Goodrich [7] and Clarkson and Varadarajan [10, Theorem 3.2] that there
exists a polynomial-time O(1)-approximation algorithm for the HSCC-problem. 2

4 Covering with squares

In this section we study the variant of the BCC-problem in which axis-aligned squares are
used, instead of general boxes (rectangles), as covering objects. We call this version the
Square Class Cover problem (SCC-problem).

Aupperle et al. [5] studied the problem of covering a rectilinear polygon with the minimum
number of axis-aligned squares. The input polygons were represented as a bit-map, that is,
a zero-one matrix in which the 1’s represent points inside the polygon, and the 0’s points
outside it. They proved that the problem (equivalent to covering the 1’s of the matrix with
the minimum number of squares) is NP-hard if the input polygon contains holes. By using a
reduction from this problem, we prove that the SCC-problem is NP-hard. Before presenting
our NP-hardness proof, we state and prove the following useful lemma:

Let s ⊂ R be a closed interval. We denote by left(s) the left endpoint of s. Let t be the
largest integer less than or equal to left(s). We say that s is lattice if left(s) = t. Otherwise,
we say that we adjust s, or that s is adjusted, if we shift s so that either left(s) = t or
left(s) = t+ 1. Given X ⊂ R, let m(X) denote the Lebesgue measure of X .
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Lemma 4.1 Let N be a positive integer number, and I be a finite set of closed intervals so
that each of them is contained in the interval [0, N ] and has integer length. Let U be the
union of the elements of I. If m([0, N ] \U) is less than one, then all non-lattice elements of
I can be adjusted in such a way U becomes equal to [0, N ].

Proof. We can do the following for j = 0, 1, . . . , N − 1: Denote by Ij the subset of intervals
s ∈ I such that j < left(s) < j + 1. Let cj be the condition that there is an interval s1 ∈ I
such that either j belongs to the interior of s1 or j = left(s1). We consider two actions:
Action 1: Adjust all intervals s2 ∈ Ij so that left(s2) = j + 1.
Action 2: Given s3 ∈ Ij, adjust both s3 and all intervals s2 ∈ Ij \ {s3} so that left(s3) = j
and left(s2) = j + 1.
If cj holds, then we apply Action 1. Otherwise, let s3 ∈ Ij be the interval minimizing left(s3).
We have that the open interval (j, left(s3)) is contained in [0, N ] \U , and we apply Action 2.

We show now that this process is correct. Consider an iteration j of the process. Note that
all intervals s ∈ I such that left(s) ≤ j are lattice. Moreover, each non-lattice interval is
adjusted, and every time it is done, m([0, N ] \ U) does not increase. For a given value of j
we have that: If cj holds, then s1 is lattice because left(s1) ≤ j. Thus, since s1 has integer
length, we obtain that [j, j + 1] ⊆ s1. If cj does not hold, let s be the interval of I such that
j < left(s) and left(s) is minimized. We have that (j, left(s)) ⊆ [0, N ]\U . As a consequence,
left(s) < j + 1 because left(s) − j = m((j, left(s))) ≤ m([0, N ] \ U) < 1. Thus, s ∈ Ij and
Action 2 is applied by considering s3 = s. We obtain that [j, j + 1] ⊆ s3. Hence, we have
that [j, j + 1] ⊆ U for j = 0, . . . , N − 1. Therefore, U = [0, N ] and the result follows. 2

Theorem 4.2 The SCC-problem is NP-hard.

Proof. Let P be a rectilinear polygon with holes represented in a N × N zero-one matrix.
We reduce P to an instance S of the SCC-problem as follows. Let M be an integer number
greater than N . We can consider that the vertices of P are lattice points in [0, N ] × [0, N ]
(Figure 14 a)). We subdivide the square [0, N ]× [0, N ] into a regular grid G of cell size 1

M
,

and put a blue (resp. red) point in every vertex of G that is in the interior (resp. boundary)
of P (Figure 14 b)). Let S be the resulting bicolored point set.

Any covering set of P is a covering set of S, and conversely, the covering squares of S can
be enlarged/shifted to be a covering set of P . Namely, let Q be a covering set of S. First,
we assume that the squares of Q are closed and we enlarge them so that they do not contain
red points in their interiors. Notice that the side length of each square in Q is now an
integer number. After that, we use Lemma 4.1 in order to shift elements of Q, horizontally
or vertically, in such a way Q becomes a covering set of P . It is as follows:

Let ` be a horizontal line passing through points of S. Let Q` denote the set of squares of
Q intersected by `, and let U` be their union. If Q` does not cover P ∩ `, then (P ∩ `) \ U`

consists of a set I` of pairwise-disjoint maximal-length segments. Moreover, the size of each
segment in I` is at most 1

M
because the distance between consecutive blue points in ` is

equal to 1
M
. Since the side length of each square in Q` is an integer number, the total size

(or measure) of (P ∩ `) \ U` is at most N
M

< 1. Therefore, it is easy to see that we can use
Lemma 4.1 in order to shift horizontally squares of Q` so that Q` covers P ∩ `.
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a) b)

0

1

2

3

1 2 3 0

1

2

3

1 2 3

Figure 14: The reduction from the problem of covering a rectilinear polygon with the minimum
number of axis-aligned squares, to the SCC-problem. a) A rectilinear polygon represented in a
3 × 3 zero-one matrix, whose vertices are considered lattice points in [0, 3] × [0, 3]. b) The set of
red and blue points generated from the polygon.

By repeating the above process for every horizontal line ` passing through points of S, and
after that considering ` vertical and working analogously, the final set Q covers P . 2

Notice that the SCC-problem remains NP-hard if we restrict the squares to be centered at
blue points. In fact, we can use the above reduction and only add blue points over the lattice
vertices of the interior of P and at the centers of the pixels of P , and red points over the
lattice points of the boundary of P .

We have shown in Section 2.3 that there exists an O(1)-approximation algorithm for the
SCC-problem because a set of squares is a set of pseudo-disks [10] (Statement 2.5).

5 Conclusions and further research

In this paper we have addressed the class cover problem with boxes. We proved its NP-
hardness and explored some variants by restricting the covering boxes to have special shapes.
The main results of this paper are the NP-hardness proofs and the exact algorithms when
we cover with strips and top-bottom half-strips, respectively (see Subsections 3.1 and 3.2).
All the approximation algorithms for the NP-hard problems come from results on ε-nets,
which were stated for a more general problem, and the factors of approximation given are
asymptotic. The major open problem is to develop approximation algorithms whose ap-
proximation factors are either better than or equal, but not asymptotic, to the ones stated
here.

A natural variant of the BCC-problem to be considered in future research is to use only ver-
tical half-strips as covering objects. At this point, we are unable to give either a polynomial-
time exact algorithm or a hardness proof. We can prove that the problem of finding an
optimal cover of B with R-empty vertical half-strips so that the top-bottom (resp. bottom-
top) half-strips have pairwise-disjoint interiors, is a 2-approximation. This new problem can
be solved in polynomial-time by using dynamic programming.

17

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
12

7,
 A

u
gu

st
 1

9,
 2

01
0



References

[1] P.K. Agarwal and S. Suri. Surface approximation and geometric partitions. Proceedings
of the fifth annual ACM-SIAM symposium on Discrete algorithms, pp. 24–33, January
23-25, 1994, Arlington, Virginia, United States.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Paghavan. Automatic subspace clustering
of high dimensional data for data mining applications. ACM SIGMOD International
Conference on Management of Data, 1998.

[3] E.M. Arkin, F. Hurtado, J.S.B. Mitchell, C. Seara, and S.S. Skiena. Some lower bounds
on geometric separability problems. International Journal of Computational Geometry
and Applications, Vol. 16, No. 1, pp. 1–26, 2006.

[4] B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets for axis-parallel rectangles and
boxes. SIAM J. Comput. Vol. 39, No. 7, pp. 3248–3282, 2010.

[5] L.J. Aupperle, H.E. Corm, J.M. Keil, and J. O’Rourke. Covering orthogonal polygons
with squares. In Proc. 26th Annu. Allerton Conf. on Communications, Control and
Computing, pp. 97–106, 1988.
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