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Abstract

The domination game, played on a graph G, was introduced in [3]. Vertices
are chosen, one at a time, by two players Dominator and Staller. Each chosen
vertex must enlarge the set of vertices of G dominated to that point in the
game. Both players use an optimal strategy–Dominator plays so as to end the
game as quickly as possible, Staller plays in such a way that the game lasts
as many steps as possible. The game domination number γg(G) is the number
of vertices chosen when Dominator starts the game and the Staller-start game
domination number γ′g(G) when Staller starts the game.
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In this paper these two games are studied when played on trees and spanning
subgraphs. A lower bound for the game domination number of a tree in terms of
the order and maximum degree is proved and shown to be asymptotically tight.
It is shown that for every k, there is a tree T with (γg(T ), γ′g(T )) = (k, k + 1)
and conjectured that there is none with (γg(T ), γ′g(T )) = (k, k − 1). A relation
between the game domination number of a graph and its spanning subgraphs is
considered. It is proved that for any integer ` ≥ 1, there exists a graph G and its
spanning tree T such that γg(G)−γg(T ) ≥ `. Moreover, there exist 3-connected
graphs G having a spanning subgraph such that the game domination number
of the spanning subgraph is arbitrarily smaller than that of G.

Keywords: domination game, game domination number, tree, spanning subgraph

AMS subject classification (2010): 05C57, 91A43, 05C69

1 Introduction

The domination game played on a graph G consists of two players, Dominator and
Staller who alternate taking turns choosing a vertex from G such that whenever
a vertex is chosen by either player, at least one additional vertex is dominated.
Dominator wishes to dominate the graph as fast as possible and Staller wishes to
delay the process as much as possible. The game domination number γg(G) is the
number of vertices chosen when Dominator starts the game provided that both
players play optimally. Similarly, the Staller-start game domination number γ′g(G)
is defined for the game when Staller starts the game. The Dominator-start game
and the Staller-start game will be briefly called Game 1 and Game 2, respectively.

This game was introduced in 2010 ([3]) but was brought to the authors’ attention
back in 2003 by Henning [4]. Among other results, the authors of [3] proved a lower
bound for the game domination number of the Cartesian product of graphs and
established a connection with Vizing conjecure; for the latter see [2]. The Cartesian
product was further investigated in [6] where the behavior of lim`→∞ γg(Km�P`)/`
was studied in detail.

In the rest of this section we give some notation, definitions, and recall results
needed later. Then, In Section 2 we prove a general lower bound for the game
domination number of a tree. In Section 3 we consider which pairs of integers (r, s)
can be realized as (γg(T ), γ′g(T )), where T is a tree. It is shown that this is the case
for all pairs but those of the form (k, k − 1). This increases the previously known
pairs that can be realized by connected graphs. For the pairs (k, k−1) we conjecture
that they cannot be realized by trees. In the final section we study relations between
the game domination number of a graph and its spanning subgraphs. Among other
results we construct graphs G having spanning trees T with γg(G)−γg(T ) arbitrarily
large. This is rather surprising because the domination number of a spanning tree
(or a spanning subgraph) can never be smaller than the domination number of its
supergraph.
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Throughout the paper we will use the convention that d1, d2, . . . denotes the
sequence of vertices chosen by Dominator and s1, s2, . . . the sequence chosen by
Staller. We say that a pair (r, s) of integers is realizable if there exists a graph G
such that γg(G) = r and γ′g(G) = s. Following [6], we make the following definitions.
A partially dominated graph is a graph in which some vertices have already been
dominated in some turns of the game already played. A vertex u of a partially
dominated graph G is saturated if each vertex in N [u] is dominated. The residual
graph of G is the graph obtained from G by removing all saturated vertices and all
edges joining dominated vertices. If G is a partially dominated graph then γg(G)
and γ′g(G) denote the optimal number of moves remaining in Game 1 and Game 2,
respectively.

Contrary to the game chromatic number (see [1] for a survey on this related
graph invariant), the game domination number of a graph G can be bounded in
terms of the domination number γ(G) of G:

Theorem 1.1 ([3]) For any graph G, γ(G) ≤ γg(G) ≤ 2γ(G)− 1.

It was demonstrated in [3] that in general Theorem 1.1 cannot be improved.
More precisely, for any integer k ≥ 1 and any 0 ≤ r ≤ k − 1, there exists a graph G
with γ(G) = k and γg(G) = k + r.

The game domination number and the Staller-start game domination number
are always close together as the next result asserts.

Theorem 1.2 ([3, 6]) For any graph G, |γg(G)− γ′g(G)| ≤ 1.

By Theorem 1.2 only pairs of the form (r, r), (r, r+1), and (r, r−1) are realizable.
The following lemma, due to Kinnersley, West, and Zamani [6] in particular

implies γ′g(G) ≤ γg(G) + 1, which is one half of Theorem 1.2. The other half was
earlier proved in [3].

Lemma 1.3 (Continuation Principle) Let G be a graph and A,B ⊆ V (G). Let GA

and GB be partially dominated graphs in which the sets A and B have already been
dominated, respectively. If B ⊆ A, then γg(GA) ≤ γg(GB) and γ′g(GA) ≤ γ′g(GB).

We wish to point out that Continuation Principle is a very useful tool for proving
results about game domination number. In particular, suppose that at some stage
of the game a vertex x is an optimal move for Dominator. Then, if there exists a
vertex y such that the undominated part of N [x] is contained in N [y], then y is also
an optimal selection for Dominator and we can thus assume (if necessary) that he
plays y.
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2 A lower bound for trees

In this section we give a lower bound on the game domination number of trees and
show that it is asymptotically sharp. Before we can state the main result, we need
the following:

Lemma 2.1 Let F be a partially dominated tree and suppose it is Staller’s turn.
Then Staller can make a move that dominates at most two new vertices.

Proof. Let A be the set of saturated vertices of F and let B be the set of vertices
of F that are dominated but not saturated. Let C = V (F )− (A∪B). Let F ′ be the
subforest of F induced by B ∪C but with edges induced by B removed (that is, F ′

is the residual graph). We may assume that C 6= ∅ since the game is not over yet.
Then F ′ has a leaf x. If Staller plays x, she dominates at most two vertices in C. If
x ∈ B, Staller dominates exactly one vertex in C. �

Note that the move guaranteed by Lemma 2.1 may not be an optimal move for
Staller. For instance, the optimal first move of Staller when playing on P5 is the
middle vertex of P5, thus dominating three new vertices. Also, we will see later that
an optimal first move for Staller when playing Game 2 on the tree Tr from Figure 2
is s1 = w thus dominating r + 1 new vertices.

Theorem 2.2 Let T be a tree on vertices v1, v2, . . . , vn, where deg(v1) ≥ deg(v2) ≥
· · · ≥ deg(vn). For j ≥ 1, let xj =

∑j
i=1 deg(vi) + 3j. Let r be the smallest integer

such that xr ≥ n. Then γg(T ) ≥ 2r − 1 when xr − 2 ≥ n, and γg(T ) ≥ 2r when
xr ≥ n. In particular,

γg(T ) ≥
⌈

2n

∆(T ) + 3

⌉
− 1 .

Proof. By Lemma 2.1, Staller can move in such a way that at most two new
vertices are dominated on each of her moves. Let us suppose that Dominator plays
optimally when Staller plays to dominate at most two new vertices on each move.
Let d1, s1, d2, s2, . . . , dt, st be the resulting game, where we assume that st is the
empty move if T is dominated after the move dt. Let f(di) (resp. f(si)) denote the
number of newly dominated vertices when Dominator plays di (resp. when Staller
plays si). Suppose the game ends on Staller’s move. Then

n =

t∑
i=1

(f(di) + f(si)) ≤
t∑

i=1

((deg(vi) + 1) + 2) =
t∑

i=1

deg(vi) + 3t = xt .

By the choice of r we find that t ≥ r. Since this strategy may not be an optimal one
for Staller, it follows that γg(T ) ≥ 2t ≥ 2r. Similar arguments gives γg(T ) ≥ 2r − 1
if the game ends on Dominator’s move.
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If Staller ends the game, then n ≤ r(∆(T ) + 3) ≤ 1
2γg(T )(∆(T ) + 3) and hence

γg(T ) ≥
⌈

2n
∆(T )+3

⌉
since γg(T ) is integral. If the game ends on Dominator’s move,

then γg(T ) ≥ 2r − 1 and hence

n ≤ r(∆(T ) + 3) ≤ γg(T ) + 1

2
(∆(T ) + 3) .

This is equivalent to 2n ≤ (γg(T ) + 1)(∆(T ) + 3) which in turn implies that

γg(T ) ≥
⌈

2n

∆(T ) + 3
− 1

⌉
=

⌈
2n

∆(T ) + 3

⌉
− 1

and we are done. �

To see that Theorem 2.2 is asymptotically optimal, consider the caterpillars
T (s, t) shown in Figure 1.

︸ ︷︷ ︸
t

· · ·
︷ ︸︸ ︷s− 1

· · ·
︷ ︸︸ ︷s− 1

· · ·
︷ ︸︸ ︷s− 1

· · ·
︷ ︸︸ ︷s− 1

· · ·
︷ ︸︸ ︷s− 1

· · ·

Figure 1: Caterpillar T (s, t)

Clearly, T (s, t) has n = st vertices. Let s ≥ t + 1, then it is easy to see that
γg(T (s, t)) = 2t − 1. Indeed, since s − 1 ≥ t, Staller can select a leaf after each of
the first t − 1 moves of Dominator. Hence after Dominator selects the t vertices of
high degree, the game is over. By Theorem 2.2, γg(T (s, t)) ≥ 2st

s+4 − 1, which for a

fixed t, tends to 2n
∆(T (s,t))+3 − 1 = 2st

s+4 − 1 ∼ 2t− 1 as s→∞.

3 Pairs realizable by trees

In this section we are interested which of the possible realizable pairs (r, r), (r, r+1),
and (r, r − 1) can be realized on trees. It was observed in [3] that all pairs (k, k),
k ≥ 1, are realizable by trees. We now show that pairs (k, k + 1) are also realizable
by trees. On the other hand, we prove that the pairs (3, 2) and (4, 3) cannot be
realized by trees and conjecture that no pair (k+ 1, k), k ≥ 1, is realizable by a tree.
(Clearly, no graph realizes the pair (2, 1).)

Theorem 3.1 For any k ≥ 1, there exits a tree T such that γg(T ) = k and γ′g(T ) =
k + 1.
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Proof. Stars K1,n, n ≥ 2, confirm the result for k = 1. For k = 2 consider the tree
on five vertices obtained from K1,3 by subdividing one edge. In the rest of the proof
assume that k ≥ 3. We distinguish three cases based on the parity of k mod 3.

Case 1: (3r, 3r + 1).
Let r ≥ 1 and consider the tree Tr of order 5r + 1 from Figure 2.

w

· · ·
a1 b1 c1

X1

a2 b2 c2

X2

ar br cr

Xr

Figure 2: Tree Tr

We claim that γg(Tr) = 3r. Dominator can prevent Staller from forcing three moves
in some Xi only if Staller does not follow Dominator on Xi but instead plays w.
But this move by Staller uses w and eventually three moves will be made on each
remaining Xj . (For example, play could be as follows: d1 = a1, s1 = b1, d2 = a2,
s2 = b2, d3 = a3, s3 = w, d4 = c3, s4 = b4, . . .. This game has 3r moves.) If, on the
other hand, Staller continues to follow Dominator in all of Xi, then w is an illegal
move. Hence γg(Tr) = 3r.

Consider now Game 2. Let Staller play s1 = w and then follow Dominator on Xi

as soon as Dominator plays on Xi. In this way, on every Xi, 1 ≤ i ≤ r, three vertices
will be played in the game, hence γ′g(Tr) ≥ 3r+1. By Theorem 1.2, γ′g(Tr) = 3r+1.

Case 2: (3r + 1, 3r + 2).
For r ≥ 1 let T ′r be the graph of order 5r + 3 obtained from Tr (the tree from
Figure 2) by attaching a path of length 2 to w with new vertices y and z, where z is
a pendant vertex (and y adjacent to w and z). Suppose Dominator plays a1 in Game
1. If Staller now plays s1 = w and Dominator plays d2 = c1, then Staller guarantees
3 from each of X2, X3, . . . , Xr. Thus if Staller plays s1 = w, then 3r + 1 moves will
be made. On the other hand, Staller could play s1 = b1 which forces three vertices
to be played on X1. Dominator would respond with d2 = a2. Continuing in this
manner (with Staller responding with si = bi to di = ai) until two moves have been
made on each of X1, X2, . . . , Xr, then Dominator would play dr+1 = y. In this way,
3r + 1 moves are made.

If Staller follows Dominator on X1, X2, . . . , Xi, but when di+1 = ai+1 Staller
suddenly plays si+1 = w, then Dominator plays di+2 = ci+1. This uses 3i+ 2 + 2 +
3(r − (i+ 1)) = 3r + 1 moves. Hence γg(T ′r) = 3r + 1.

We play Game 2 next. Let s1 = w. Then each Xi will have three played
vertices since Staller follows Dominator on each Xi and hence γ′g(T ′r) ≥ 3r + 2. By
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Theorem 1.2, γ′g(T ′r) = 3r + 2.

Case 3: (3r + 2, 3r + 3).
In this case consider the tree T ′′r (r ≥ 1) obtained from the tree Tr (of Figure 2) by
attaching a path of length 2 to b1, say P = b1, p, q, and a path of length 2 to br,
say Q = br, u, v. Note that if r = 1, then P and Q are attached at the same vertex
b1 = br.

Proof that γg(G) = 3r + 2 is similar to the proof of Case 1 in that Dominator
either forces Staller to follow in each Xi or saves one move in some Xi in exchange
for Staller playing w. Two more moves are required in order to dominate q and v.
(Note that the same argument works also for r = 1.) An optimal strategy in Game
2 is again s1 = w, now each Xi will have three played vertices and there will be two
more played vertices because of q and v. Hence γ′g(T ′′r ) ≥ 3r + 3 and we conclude
that γ′g(T ′′r ) = 3r + 3. �

For the (k, k − 1) case we pose:

Conjecture 3.2 No pair (k, k − 1), k ≥ 3, can be realized by a tree.

In the rest of the section we prove the first two cases of the conjecture:

Theorem 3.3 No tree realizes the pair (3, 2) or the pair (4, 3).

Proof. Suppose that a tree T realizes (3, 2). It is easy to see that γ′g(T ) = 2 implies
that T is either a star K1,n for n ≥ 2 or a P4. In both cases γg(T ) ≤ 2, thus (3, 2)
is not realizable on trees.

Suppose T is a tree that realizes (4, 3), and let d1 = x be an optimal first move
for Dominator. The residual graph T ′ has at most 3 components, each of which is
a partially dominated subtree of T . Note that if one of these partially dominated
components F has γ′g(F ) = 1, then F has exactly one undominated vertex.

Suppose first that T ′ has three partially dominated components T1, T2, T3 with
Ti rooted at the dominated vertex vi. If at least one of these subtrees, say T1 has
more than one undominated vertices, then Staller can force at least two moves in T1.
Because the other two subtrees each require at least one move, it follows that γg(T ) ≥
5, a contradiction. Hence, each of T1, T2, T3 has exactly one undominated vertex,
and T is the tree of order 7 formed by identifying a leaf from three copies of P3.
However, this tree has Staller-start game domination number 4, again contradicting
our initial assumption.

Now suppose that T ′ is the disjoint union of T1 and T2. Note that in this case x
cannot be a support vertex in the original tree T . Indeed, if x is adjacent to a leaf
y, then when Game 2 is played on T Staller can play first at y which is easily shown
to force at least four moves. Thus, deg(x) = 2. If γ′g(T1) = 1 = γ′g(T2), then T = P5

and γg(T ) = 3, a contradiction.
Note that the Staller-start game domination number of any of these two partially

dominated trees cannot exceed 2. We may thus assume without loss of generality
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that 2 = γ′g(T1) ≥ γ′g(T2). Suppose that γ′g(T2) = 2. Staller can then play at vertex
x when Game 2 is played on T . After Dominator’s first move at least one of T1 or
T2 is part of the residual graph, and Staller can then force at least two more moves
again contradicting the assumption that γ′g(T ) = 3. Therefore, T2 is the path of
order 2 with one of its vertices dominated.

If T1 is a star with v1 as its center or as one of its leaves, then γ(T ) = 2 and
hence 4 = γg(T ) ≤ 2 · 2− 1, an obvious contradiction. Therefore, γ′g(T1) = 2, but T1

is not a star. A short analysis shows that T1 must be one of the partially dominated
trees in Figure 3. Each of these candidates for T1 together with T2 = P2 yields a tree
T with either γg(T ) 6= 4 or γ′g(T ) 6= 3, again contradicting our assumption about T .
This implies that the residual graph T ′ has exactly one component.

v1 v1

v1

v1

· · · · · ·
w1 wt

t ≥ 1
w1 wt

t ≥ 1

Figure 3: Possible partially dominated trees

By Continuation Principle (Lemma 1.3) it must be the case that x is a support
vertex in T because we assumed that x was an optimal move by Dominator. Let
A = {v1} and B = ∅. Since γ′g(T1) = 3 we apply Lemma 1.3 to get

3 = γ′g(T ) = γ′g(TB) ≥ γ′g(TA) ≥ 1 + γ′g(T1) = 4 .

This establishes the theorem. �

4 Game on spanning subgraphs

We now turn our attention to relations between the game domination number of a
graph and its spanning subgraphs, in particular spanning trees.

Note that since any graph is a spanning subgraph of the complete graph of the
same order, the ratio γg(H)/γg(G) where H is a spanning subgraph of G can be
arbitrarily large. On the other hand the following result shows that this ratio is
bounded below by one half.

8

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

2,
 S

ep
te

m
be

r 
27

, 2
01

1



Proposition 4.1 Let G be a graph and let H be a spanning subgraph of G. Then

γg(H) ≥ γg(G) + 1

2
.

In particular, if T is a spanning tree of connected G, then γg(T ) ≥ (γg(G) + 1)/2.

Proof. Clearly, γ(H) ≥ γ(G). By Theorem 1.1, γg(H) ≥ γ(H) and γg(G) ≤
2γ(G)− 1. Then γg(H) ≥ γ(H) ≥ γ(G) ≥ (γg(G) + 1)/2. �

To see that a spanning subgraph can indeed have game domination number much
smaller that its supergraph, consider the graph Gt consisting of t blocks isomorphic
to the house graph and its spanning subgraph Ht, see Figure 4. Let x be the vertex
where the houses of Gt are amalgamated. Note that Dominator needs at least two
moves to dominate each of the blocks of Gt. Hence his strategy is to play d1 = x and
then finish dominating one block at each move. On the other hand, if not all blocks
are already dominated, Staller can play the vertex of degree 2 adjacent to x of such
a block B in order to force one more move on B. So in half of the blocks two vertices
will be played (not counting the move on x) which in turn implies that γg(Gt) is
about 3t/2. On the other hand, playing Game 1 on Ht, the optimal first move for
Dominator is d1 = x. After that Staller and Dominator will in turn dominate each
of the triangles, hence γg(Ht) = t+ 1.

Gt Ht

1

2
t

x x

Figure 4: Graph Gt and its spanning subgraph Ht

The example of Figure 4 might indicate that spanning subgraphs can have smaller
game domination number than their supergraphs provided none is 2-connected.
However:

Theorem 4.2 For any m ≥ 3 there exists a 3-connected graph Gm and its 2-
connected spanning subgraph Hm such that γg(Gm) ≥ 2m− 2 and γg(Hm) = m.

Proof. We form a graph Gm of order n = m(m + 2) as follows. Let Xi =
{ai,1, ai,2, . . . , ai,m} ∪ {xi, yi} for each 1 ≤ i ≤ m, and then set

V (Gm) =

m⋃
i=1

Xi .
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The edges are the following. We let {x1, y1, x2, y2, . . . , xm, ym} induce a complete
graph of order 2m. For each p, 1 ≤ p ≤ m we let Xi induce a complete graph of
order m + 2. In addition, for each 1 ≤ i ≤ m − 1 and each i ≤ j ≤ m − 1 we add
the edge ai,jaj+1,i. See Figure 5 for G4.

K8

K6 K6 K6 K6

x1 y1 x2 y2 x3 y3 x4 y4

a1,1

a1,2

a1,3

a1,4

Figure 5: Graph G4

Suppose first that d1 = x1. Then Staller plays in X1, say s1 = a1,1. Then, in
each of the next rounds, Continuation Principle implies that Dominator must play
in some Xi that has not been played in before and on a vertex of Xi that has a
neighbor outside Xi. It will always be possible for Staller to follow Dominator and
also play in Xi in each of her first m− 2 moves. Hence by this time, 2m− 4 moves
were made. At this stage, there are two undominated vertices in different Xi’s with
no common neighbor. Hence two more moves are needed to end the game which
thus ends in no less than 2m− 2 moves.

Assume next that d1 = a1,1. Then Staller plays s1 = x1 and we are in the first
case. Note that playing d1 = x1 or d1 = a1,1 covers all the cases due to symmetry.
Hence γg(Gm) ≥ 2m− 2.

The spanning subgraphHm ofGm is obtained by removing all the edges ai,jaj+1,i.
By Continuation Principle we may without loss of generality assume that d1 = x1

when Game 1 is played on Hm. But then on each successive move of either of the
players the newly dominated vertices are a subset of the Xi on which they play.
Hence γg(Hm) = m. �

If γg(G) attains one of the two possible extremal values, γ(G) or 2γ(G)− 1, we
can say more.

Proposition 4.3 Let G be a graph with γg(G) = γ(G) and let H be a spanning
subgraph of G. Then γg(H) ≥ γg(G).
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Proof. γg(H) ≥ γ(H) ≥ γ(G) = γg(G). �

In particular, every spanning tree T of a connected graph G with γg(G) = γ(G)
has γg(T ) ≥ γg(G).

Proposition 4.4 Let G be a graph with γg(G) = 2γ(G)−1 and let H be a spanning
subgraph of G with γ(H) = γ(G). Then γg(H) ≤ γg(G).

Proof. γg(H) ≤ 2γ(H)− 1 = 2γ(G)− 1 = γg(G). �

Since every graph G has a spanning forest F such that γ(G) = γ(F ), see [5,
Exercise 10.14], we infer:

Corollary 4.5 Let G be a graph with γg(G) = 2γ(G) − 1. Then G contains a
spanning forest F (spanning tree if G is connected) such that γg(F ) ≤ γg(G).

In the rest of this section we focus on spanning trees. First we show that a graph
can have the property that all of its spanning trees have game domination number
much larger than that of the supergraph. Let n ≥ 3, m = 2r, and let S be the
star with center x and leaves v1, v2, . . . , vm. Let Gm be the graph (of order nm+ 1)
constructed by identifying a vertex of a complete graph of order n with vi, for each
i, 1 ≤ i ≤ m; see Figure 6.

x

v1 v2 vm

Kn Kn Kn

· · ·

Figure 6: Graph Gm

We first note that γg(Gm) = m+ 1. Let T be any spanning tree of Gm. T has at
least one leaf `i in the subtree Ti of T rooted at vi when the edge xvi is removed from
T (choose `i 6= vi). When Game 1 is played on T , Staller can choose at least half
of these leaves (`1, `2, . . . , `m) or let Dominator choose them. Thus in at least half
of T1, T2, . . . , Tm, two vertices will be chosen. Therefore γg(T ) ≥ m+m/2 = 3m/2,
hence we conclude that

γg(T )− γg(Gm) ≥ 3

2
m−m− 1 = r − 1 .
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Next we give an example of a spanning tree with game domination number
smaller than the one of its supergraph. Consider the graph G and its spanning tree
T from Figure 7.

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

Figure 7: Graph G and its spanning tree T

For each of the following pairs of vertices (x, y) from G, if Dominator plays x
then Staller can play y and then the game domination number of the resulting resid-
ual graph G′ will be 2: (1, 6); (2, 3); (3, 2); (4, 8); (8, 4); (7, 3); (6, 1); (5, 1). Therefore,
γg(G) ≥ 4. Consider now the spanning tree T and let Dominator play 2 on T . For
each of the following vertices a, the residual graph T ′ when Staller plays a is listed
in Figure 8. For instance, the left case is when Staller plays a = 5 in which case the
residual graph is induced by vertices 6, 7, 8 and the vertex 6 of the residual graph is
already dominated as indicated by the filled vertex.

(5, );
6 7 8

(6, );
7 8

(7, );
5 6

(8, );
5 6

Figure 8: Staller’s possible moves

In each case we find that the residual graph has game domination number 1 and
therefore,

γg(T ) ≤ 3 < γg(G) .

This rather surprising fact demonstrates the intrinsic difficulty and unusual be-
havior of the game domination number. But even more can be shown:

Theorem 4.6 For any integer ` ≥ 1, there exists a graph G and its spanning tree
T such that γg(G)− γg(T ) ≥ `.

Proof. We introduce the family of graphs Gk and their spanning trees Tk in
the following way. Let k be a positive integer, and for each i between 1 and k,
x1
i , x

2
i , x

3
i , x

4
i , x

5
i are non-adjacent vertices in Tk, and Qi : y1

i y
2
i y

3
i y

4
i y

5
i is a path

isomorphic to P5 in Tk. Finally x and y are two vertices, such that x is adja-
cent to x1

i , x
2
i , x

3
i , x

4
i and x5

i for all i ∈ {1, . . . , k}, while y is adjacent to y1
i for all

i ∈ {1, . . . , k}, and x and y are also adjacent. The resulting graph Tk is a tree on
10k + 2 vertices. We obtain Gk by adding edges between xji and yji for 1 ≤ i ≤ k,
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1 ≤ j ≤ 5. See Figure 9 for G4, from which T4 is obtained by removing all vertical
edges except xy.

y

x

Figure 9: Graph G4

To complete the proof it suffices to show that for any integer k ≥ 1,

γg(Gk) ≥ 5

2
k − 1 and γg(Tk) ≤ 2k + 3 .

Let us first verify the second inequality, concerning trees Tk. To prove it we need to
show that Dominator has a strategy by which at most 2k + 3 moves will be played
during Game 1. His strategy is as follows. In his first two moves, he ensures that
x and y are chosen. He plays x in his first move, and y in his second move, unless
already Staller played y (we will consider this case later). Now, s1 6= y implies that
s1 is in some Qi, without loss of generality let this be Q1. Hence in Dominator’s
third move, since y1

i is dominated for each i, he can dominate all vertices of Q1. One
by one, Staller will have to pick a new Qi to play in, which Dominator will entirely
dominate in his next move. Altogether, in each Qi (with a possible exception of
one Qi, where Staller can force three vertices to be played), there will be only two
vertices played, which yields 2k + 3 as the total number of moves in this game. On
the other hand, if s1 = y, then d2 = y3

1 ensures that in Q1 only two vertices will
be played. Moreover, Dominator can follow Staller in each of the remaining Qis to
force only two moves in each. Hence the game will finish in 2k + 2 moves.

To prove the first inequality we need to show that Staller has a strategy to enforce
at least 5

2k−1 moves played during Game 1 in Gk. Her strategy in each of the first k
moves of the game is to play an x4

i for which no vertex from Qi∪{x1
i , x

2
i , x

3
i , x

5
i } has

been played before her move. This is clearly possible as Dominator made at most dk2e
of these moves. Using this strategy she ensures that in each of these bk2c Qis at least
two more moves will be needed (since at least y2

i , y
3
i and y5

i are left undominated).
The remaining dk2e paths Qi require two moves each. Hence altogether, there will

be at least 2k + bk2c moves played during Game 1, which implies γg(Gk) ≥ 5
2k − 1.

�
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